Finite-size scaling and particle-size cutoff effects in phase-separating polydisperse fluids

被引:24
作者
Wilding, NB [1 ]
Sollich, P
Fasolo, M
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
D O I
10.1103/PhysRevLett.95.155701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the liquid-vapor phase behavior of a polydisperse fluid using grand canonical simulations and moment free energy calculations. The strongly nonlinear variation of the fractional volume of liquid across the coexistence region prevents naive extrapolation from detecting the cloud point. We describe a finite-size scaling method which, nevertheless, permits accurate determination of cloud points from simulations of a single system size. By varying a particle-size cutoff, we find that the cloud point density is highly sensitive to the presence of rare large particles; this could affect the reproducibility of experimentally measured phase behavior in colloids and polymers.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Phase diagrams of polydisperse van der Waals fluids [J].
Bellier-Castella, L ;
Xu, H ;
Baus, M .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :8337-8347
[2]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[3]   Theory of the evaporation /condensation transition of equilibrium droplets in finite volumes [J].
Binder, K .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 :99-114
[4]   FINITE-SIZE EFFECTS AT ASYMMETRIC 1ST-ORDER PHASE-TRANSITIONS [J].
BORGS, C ;
KOTECKY, R .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1734-1737
[5]   NEW METHOD TO DETERMINE 1ST-ORDER TRANSITION POINTS FROM FINITE-SIZE DATA [J].
BORGS, C ;
JANKE, W .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1738-1741
[6]   Size fractionation in a phase-separated colloidal fluid [J].
Erné, BH ;
van den Pol, E ;
Vroege, GJ ;
Visser, T ;
Wensink, HH .
LANGMUIR, 2005, 21 (05) :1802-1805
[7]   Universal law of fractionation for slightly polydisperse systems [J].
Evans, RML ;
Fairhurst, DJ ;
Poon, WCK .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1326-1329
[8]  
Fasolo M, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.041410
[9]   Thermodynamics - Imperfect fluids and inheritance [J].
Fredrickson, GH .
NATURE, 1998, 395 (6700) :323-324
[10]   Triple points in solutions of polydisperse semiflexible polymers [J].
Ghosh, K ;
Muthukumar, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (15)