A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning

被引:412
作者
Valouev, Anton [1 ,2 ]
Ichikawa, Jeffrey [3 ]
Tonthat, Thaisan [1 ,2 ]
Stuart, Jeremy [3 ]
Ranade, Swati [3 ]
Peckham, Heather [3 ]
Zeng, Kathy [1 ,2 ]
Malek, Joel A. [3 ]
Costa, Gina [3 ]
McKernan, Kevin [3 ]
Sidow, Arend [1 ,2 ]
Fire, Andrew [1 ,2 ]
Johnson, Steven M. [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Genet, Stanford, CA 94305 USA
[3] Appl Biosyst Inc, Beverly, MA 01915 USA
关键词
D O I
10.1101/gr.076463.108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes ( in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome.
引用
收藏
页码:1051 / 1063
页数:13
相关论文
共 34 条
[1]   Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome [J].
Albert, Istvan ;
Mavrich, Travis N. ;
Tomsho, Lynn P. ;
Qi, Ji ;
Zanton, Sara J. ;
Schuster, Stephan C. ;
Pugh, B. Franklin .
NATURE, 2007, 446 (7135) :572-576
[2]   TRANSSPLICING AND POLYCISTRONIC TRANSCRIPTION IN CAENORHABDITIS-ELEGANS [J].
BLUMENTHAL, T .
TRENDS IN GENETICS, 1995, 11 (04) :132-136
[3]   Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution [J].
Davey, CA ;
Sargent, DF ;
Luger, K ;
Maeder, AW ;
Richmond, TJ .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1097-1113
[4]   THE DIFFERENTIALLY EXPRESSED 16-KD HEAT-SHOCK GENES OF CAENORHABDITIS-ELEGANS EXHIBIT DIFFERENTIAL CHANGES IN CHROMATIN STRUCTURE DURING HEAT-SHOCK [J].
DIXON, DK ;
JONES, D ;
CANDIDO, EPM .
DNA AND CELL BIOLOGY, 1990, 9 (03) :177-191
[5]   Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations [J].
Dressman, D ;
Yan, H ;
Traverso, G ;
Kinzler, KW ;
Vogelstein, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (15) :8817-8822
[6]   IN-CELL PCR FROM MESSENGER-RNA - AMPLIFYING AND LINKING THE REARRANGED IMMUNOGLOBULIN HEAVY AND LIGHT CHAIN V-GENES WITHIN SINGLE CELLS [J].
EMBLETON, MJ ;
GOROCHOV, G ;
JONES, PT ;
WINTER, G .
NUCLEIC ACIDS RESEARCH, 1992, 20 (15) :3831-3837
[7]   Unusual DNA structures associated with germline genetic activity in Caenorhabditis elegans [J].
Fire, Andrew ;
Alcazar, Rosa ;
Tan, Frederick .
GENETICS, 2006, 173 (03) :1259-1273
[8]   Directed evolution of polymerase function by compartmentalized self-replication [J].
Ghadessy, FJ ;
Ong, JL ;
Holliger, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4552-4557
[9]   SEQUENCE SPECIFIC CLEAVAGE OF DNA BY MICROCOCCAL NUCLEASE [J].
HORZ, W ;
ALTENBURGER, W .
NUCLEIC ACIDS RESEARCH, 1981, 9 (12) :2643-2658
[10]   Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences [J].
Ioshikhes, I ;
Bolshoy, A ;
Derenshteyn, K ;
Borodovsky, M ;
Trifonov, EN .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 262 (02) :129-139