Retrieval and use of the balance set in multiobjective global optimization

被引:23
作者
Galperin, EA
Wiecek, MM
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
global multiobjective optimization; balance sets; interactive method; feasible region;
D O I
10.1016/S0898-1221(99)00063-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown, on examples, how to compute the balance set and the balance number in Vector Optimization Problems (VOPs) of different nature. New developments are presented concerning possible interrelation between the balance set and the balance number, a new notion of the projection of the balance set onto the parameter space, new approaches for solving VOPs with unbounded objective functions, and some approximation techniques in determining the balance set. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:111 / 123
页数:13
相关论文
共 39 条
[1]  
BENSON HP, 1978, J OPTIMIZATION THEOR, V26, P560
[2]   USE OF EXACT PENALTY-FUNCTIONS TO DETERMINE EFFICIENT DECISIONS [J].
BERNAU, H .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1990, 49 (03) :348-355
[3]  
Chankong V., 1983, Multiobjective Decision Making: Theory and Methodology
[4]  
COCHRANE JL, 1973, MULTIPLE CRITERIA DE
[5]  
Cohon J., 1978, Multiobjective programming and planning
[6]   FINDING ALL EFFICIENT EXTREME POINTS FOR MULTIPLE OBJECTIVE LINEAR PROGRAMS [J].
ECKER, JG ;
KOUADA, IA .
MATHEMATICAL PROGRAMMING, 1978, 14 (02) :249-261
[7]   FINDING EFFICIENT POINTS FOR LINEAR MULTIPLE OBJECTIVE PROGRAMS [J].
ECKER, JG ;
KOUADA, IA .
MATHEMATICAL PROGRAMMING, 1975, 8 (03) :375-377
[8]  
Galperin E. A., 1990, CUBIC ALGORITHM OPTI
[9]   NONSCALARIZED MULTIOBJECTIVE GLOBAL OPTIMIZATION [J].
GALPERIN, EA .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (01) :69-85
[10]   COMPROMISE SOLUTIONS AND ESTIMATION OF THE NON-INFERIOR SET [J].
GEARHART, WB .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 28 (01) :29-47