Contribution of myosin rod protein to the structural organization of adult and embryonic muscles in Drosophila

被引:9
作者
Polyák, E [1 ]
Standiford, DM [1 ]
Yakopson, V [1 ]
Emerson, CP [1 ]
Franzini-Armstrong, C [1 ]
机构
[1] Univ Penn, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
关键词
myosin rod protein; myosin; Drosophila; myofibrillogenesis; sarcomere;
D O I
10.1016/S0022-2836(03)00827-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myosin rod protein (MRP) is a naturally occurring 155 kDa protein in Drosophila that includes the myosin heavy chain (MHC) rod domain, but contains a unique 77 amino acid residue N-terminal region that replaces the motor and light chain-binding domains of S1. MRP is a major component of myofilaments in certain direct flight muscles (DFMs) and it is present in other somatic, cardiac and visceral muscles in adults, larvae and embryos, where it is coexpressed and polymerized into thick filaments along with MHC. DFM49 has a relatively high content of MRP, and is characterized by an unusually disordered myofibrillar ultrastructure, which has been attributed to lack of cross-bridges in the filament regions containing MRR Here, we characterize in detail the structural organization of myofibrils in adult and embryonic Drosophila muscles containing various MRP/MHC ratios and in embryos carrying a null mutation for the single MHC gene. We examined MRP in embryonic body wall and intestinal muscles as well as in DFMs with consistent findings. In DFMs numbers 49, 53 and 55, MRP is expressed at a high level relative to MHC and is associated with disorder in the positioning of thin filaments relative to thick filaments in the areas of overlap. Embryos that express MRP in the absence of MHC form thick filaments that participate in the assembly of sarcomeres, suggesting that myofibrillogenesis does not depend on strong myosin-actin interactions. Further, although thick filaments are not well ordered, the relative positioning of thin filaments is fairly regular in MRP-only containing sarcomeres, confirming the hypothesis that the observed disorder in MRP/MHC containing wild-type muscles is due to the combined action between the functional behavior of MRP and MHC myosin heads. Our findings support the conclusion that MRP has an active function to modulate the contractile activity of muscles in which it is expressed. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1077 / 1091
页数:15
相关论文
共 46 条
[1]   TAXOL INDUCES POSTMITOTIC MYOBLASTS TO ASSEMBLE INTERDIGITATING MICROTUBULE-MYOSIN ARRAYS THAT EXCLUDE ACTIN-FILAMENTS [J].
ANTIN, PB ;
FORRYSCHAUDIES, S ;
FRIEDMAN, TM ;
TAPSCOTT, SJ ;
HOLTZER, H .
JOURNAL OF CELL BIOLOGY, 1981, 90 (02) :300-308
[2]  
Ashburner M., 1989, DROSOPHILA LAB HDB
[3]  
ATKINSON SJ, 1991, J CELL SCI, P7
[4]  
Bate Michael, 1993, P1013
[5]   DROSOPHILA MUSCLE MYOSIN HEAVY-CHAIN ENCODED BY A SINGLE GENE IN A CLUSTER OF MUSCLE MUTATIONS [J].
BERNSTEIN, SI ;
MOGAMI, K ;
DONADY, JJ ;
EMERSON, CP .
NATURE, 1983, 302 (5907) :393-397
[6]  
Campos-Ortega JA, 1997, EMBRYONIC DEV DROSOP
[7]   LOCATION OF PARAMYOSIN IN RELATION TO THE SUBFILAMENTS WITHIN THE THICK FILAMENTS OF SCALLOP STRIATED-MUSCLE [J].
CASTELLANI, L ;
VIBERT, P .
JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY, 1992, 13 (02) :174-182
[8]   STRUCTURE OF MYOSIN PARAMYOSIN FILAMENTS FROM A MOLLUSCAN SMOOTH-MUSCLE [J].
CASTELLANI, L ;
VIBERT, P ;
COHEN, C .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 167 (04) :853-872
[9]   PARAMYOSIN AND FILAMENTS OF MOLLUSCAN CATCH MUSCLES .1. PARAMYOSIN - STRUCTURE AND ASSEMBLY [J].
COHEN, C ;
SZENTGYO.AG ;
KENDRICK.J .
JOURNAL OF MOLECULAR BIOLOGY, 1971, 56 (02) :223-+
[10]   Assembly of thick filaments and myofibrils occurs in the absence of the myosin head [J].
Cripps, RM ;
Suggs, JA ;
Bernstein, SI .
EMBO JOURNAL, 1999, 18 (07) :1793-1804