Exploratory Power of the Harmony Search Algorithm: Analysis and Improvements for Global Numerical Optimization

被引:185
作者
Das, Swagatam [1 ]
Mukhopadhyay, Arpan [1 ]
Roy, Anwit [1 ]
Abraham, Ajith [2 ]
Panigrahi, Bijaya K. [3 ]
机构
[1] Jadavpur Univ, Dept Elect & Telecommun Engn, Kolkata 700032, India
[2] Sci Network Innovat & Res Excellence, Machine Intelligence Res Labs MIR Labs, Auburn, WA 98071 USA
[3] Indian Inst Technol, Dept Elect Engn, New Delhi 110016, India
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2011年 / 41卷 / 01期
关键词
Explorative power; global optimization; harmony search (HS); particle swarm optimization (PSO); population variance; EVOLUTIONARY ALGORITHMS; DESIGN; HEAT;
D O I
10.1109/TSMCB.2010.2046035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The theoretical analysis of evolutionary algorithms is believed to be very important for understanding their internal search mechanism and thus to develop more efficient algorithms. This paper presents a simple mathematical analysis of the explorative search behavior of a recently developed metaheuristic algorithm called harmony search (HS). HS is a derivative-free real parameter optimization algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. This paper analyzes the evolution of the population-variance over successive generations in HS and thereby draws some important conclusions regarding the explorative power of HS. A simple but very useful modification to the classical HS has been proposed in light of the mathematical analysis undertaken here. A comparison with the most recently published variants of HS and four other state-of-the-art optimization algorithms over 15 unconstrained and five constrained benchmark functions reflects the efficiency of the modified HS in terms of final accuracy, convergence speed, and robustness.
引用
收藏
页码:89 / 106
页数:18
相关论文
共 56 条
[1]  
ANGELINE PJ, 1998, LECT NOTES COMPUTER, V1447, P84
[2]  
Back T., 1997, HDB EVOLUTIONARY COM
[3]  
Beyer H.-G., 1998, Evolutionary Programming VII. 7th International Conference, EP98. Proceedings, P323, DOI 10.1007/BFb0040785
[4]  
BEYER HG, 1999, P FOGA 5, P5
[5]   An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis [J].
Cheng, Y. M. ;
Li, L. ;
Lansivaara, T. ;
Chi, S. C. ;
Sun, Y. J. .
ENGINEERING OPTIMIZATION, 2008, 40 (02) :95-115
[6]   An improved harmony search algorithm for synchronization of discrete-time chaotic systems [J].
Coelho, Leandro dos Santos ;
de Andrade Bernert, Diego Luis .
CHAOS SOLITONS & FRACTALS, 2009, 41 (05) :2526-2532
[7]   A computationally efficient evolutionary algorithm for real-parameter optimization [J].
Deb, K ;
Anand, A ;
Joshi, D .
EVOLUTIONARY COMPUTATION, 2002, 10 (04) :371-395
[8]   OPTIMAL-DESIGN OF A WELDED BEAM VIA GENETIC ALGORITHMS [J].
DEB, K .
AIAA JOURNAL, 1991, 29 (11) :2013-2015
[9]   A robust stochastic approach for design optimization of air cooled heat exchangers [J].
Doodman, A. R. ;
Fesanghary, M. ;
Hosseini, R. .
APPLIED ENERGY, 2009, 86 (7-8) :1240-1245
[10]  
Eiben A. E., 1998, Fundamenta Informaticae, V35, P35