A compressive beamforming method

被引:86
作者
Guerbuez, Ali Cafer [1 ]
McClellan, James H. [1 ]
Cevher, Volkan [2 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Univ Maryland, College Pk, MD 20742 USA
来源
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12 | 2008年
关键词
Compressive Sensing; DOA estimation; acoustic; basis pursuit; convex optimization;
D O I
10.1109/ICASSP.2008.4518185
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Compressive Sensing (CS) is an emerging area which uses a relatively small number of non-traditional samples in the form of randomized projections to reconstruct sparse or compressible signals. This paper considers the direction-of-arrival (DOA) estimation problem with an array of sensors using CS. We show that by using random projections of the sensor data, along with a full waveform recording on one reference sensor, a sparse angle space scenario can be reconstructed, giving the number of sources and their DOA's. The number of projections can be very small, proportional to the number sources. We provide simulations to demonstrate the performance and the advantages of our compressive beamformer algorithm.
引用
收藏
页码:2617 / +
页数:2
相关论文
共 7 条
[1]  
Baraniuk Richard, 2007, 2007 IEEE Radar Conference, P128, DOI 10.1109/RADAR.2007.374203
[2]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[3]  
CANDES EJ, ANN STAT IN PRESS
[4]  
CEVHER V, 2008, ICASSP UNPUB
[5]   On the application of the global matched filter to DOA estimation with uniform circular arrays [J].
Fuchs, JJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (04) :702-709
[6]  
FUCHS JJ, 1996, IEEE INT C AC SPEECH, V6, P3161
[7]  
Johnson D.H., 1993, Array Signal Processing: Concepts and Techniques, DOI DOI 10.1016/j.visres.2004.01.005