miRNA regulation of Sdf1 chemokine signaling provides genetic robustness to germ cell migration

被引:98
作者
Staton, Alison A. [1 ]
Knaut, Holger [2 ]
Giraldez, Antonio J. [1 ,3 ]
机构
[1] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06510 USA
[2] NYU, Sch Med, Dev Genet Program, Skirball Inst Biomol Med, New York, NY USA
[3] Yale Univ, Sch Med, Yale Stem Cell Ctr, New Haven, CT USA
基金
美国国家卫生研究院;
关键词
ZEBRAFISH GASTRULATION; MESSENGER-RNAS; MICRORNAS; EXPRESSION; EVOLUTION; TARGET; DROSOPHILA; SPECIFICATION; CONSEQUENCES; CANALIZATION;
D O I
10.1038/ng.758
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
microRNAs (miRNAs) function as genetic rheostats to control gene output. Based on their role as modulators, it has been postulated that miRNAs canalize development and provide genetic robustness. Here, we uncover a previously unidentified regulatory layer of chemokine signaling by miRNAs that confers genetic robustness on primordial germ cell (PGC) migration. In zebrafish, PGCs are guided to the gonad by the ligand Sdf1a, which is regulated by the sequestration receptor Cxcr7b. We find that miR-430 regulates sdf1a and cxcr7 mRNAs. Using target protectors, we demonstrate that miR-430-mediated regulation of endogenous sdf1a (also known as cxcl12a) and cxcr7b (i) facilitates dynamic expression of sdf1a by clearing its mRNA from previous expression domains, (ii) modulates the levels of the decoy receptor Cxcr7b to avoid excessive depletion of Sdf1a and (iii) buffers against variation in gene dosage of chemokine signaling components to ensure accurate PGC migration. Our results indicate that losing miRNA-mediated regulation can expose otherwise buffered genetic lesions leading to developmental defects.
引用
收藏
页码:204 / U45
页数:9
相关论文
共 46 条
[1]   The chemokine SDF-1 is a chemoattractant for human CD34(+) hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34(+) progenitors to peripheral blood [J].
Aiuti, A ;
Webb, IJ ;
Bleul, C ;
Springer, T ;
GutierrezRamos, JC .
JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 185 (01) :111-120
[2]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[3]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[4]   Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs [J].
Bartel, DP ;
Chen, CZ .
NATURE REVIEWS GENETICS, 2004, 5 (05) :396-400
[5]   Control of chemokine-guided cell migration by ligand sequestration [J].
Boldajipour, Bijan ;
Mahabaleshwar, Harsha ;
Kardash, Elena ;
Reichman-Fried, Michal ;
Blaser, Heiko ;
Minina, Sofia ;
Wilson, Duncan ;
Xu, Qiling ;
Raz, Erez .
CELL, 2008, 132 (03) :463-473
[6]   Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo [J].
Broxmeyer, HE ;
Cooper, S ;
Kohli, L ;
Hangoc, G ;
Lee, Y ;
Mantel, C ;
Clapp, DW ;
Kim, CH .
JOURNAL OF IMMUNOLOGY, 2003, 170 (01) :421-429
[7]   Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430 [J].
Choi, Wen-Yee ;
Giraldez, Antonio J. ;
Schier, Alexander F. .
SCIENCE, 2007, 318 (5848) :271-274
[8]   Molecular basis of cell migration in the fish lateral line:: Role of the chemokine receptor CXCR4 and of its ligand, SDF1 [J].
David, NB ;
Sapède, D ;
Saint-Etienne, L ;
Thisse, C ;
Thisse, B ;
Dambly-Chaudière, C ;
Rosa, FM ;
Ghysen, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16297-16302
[9]   Guidance of primordial germ cell migration by the chemokine SDF-1 [J].
Doitsidou, M ;
Reichman-Fried, M ;
Stebler, J ;
Köprunner, M ;
Dörries, J ;
Meyer, D ;
Esguerra, CV ;
Leung, T ;
Raz, E .
CELL, 2002, 111 (05) :647-659
[10]  
Fenyes F., 2010, ZFIN DIRECT DA UNPUB