Adsorption of atomic hydrogen at a nanostructured electrode of polyacrylate-capped Pt nanoparticles in polyelectrolyte

被引:31
作者
Markarian, MZ [1 ]
El Harakeh, M [1 ]
Halaoui, LI [1 ]
机构
[1] Amer Univ Beirut, Dept Chem, Beirut 110236, Lebanon
关键词
D O I
10.1021/jp044267m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic hydrogen electrosorption is reported at crystallite sites of polyacrylate-capped Pt nanoparticles (< d > = 2.5 +/- 0.6 nm), by assembling nanostructured electrodes of polyacrylate-Pt nanocrystallites layer-by-layer in a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). Cyclic voltammetry in 1 M H2SO4 revealed a strongly adsorbed hydrogen state and a weakly adsorbed hydrogen state assigned to adsorption at (100) and (110) sites of the modified nanocrystallites, respectively. Resolving hydrogen adsorption states signifies that surface capping by the carboxylate groups is not irreversibly blocking hydrogen adsorption sites at the modified Pt nanoparticle surface. Adsorption peak currents increased with increasing the number of layers up to 16 bilayers, indicating the feasibility of nanoparticle charging via interparticle charge hopping and the accessibility of adsorption states within the thickness of the nanoparticle/polyelectrolyte multilayers. Despite similarity in hydrogen adsorption in the cyclic voltammorgrams in 1 M H2SO4, negative shifts in adsorption potentials were measured at the nanocrystallite Pt-polyelectrolyte multilayers relative to a polycrystalline bulk Pt surface. This potential shift is attributed to a kinetic limitation in the reductive hydrogen adsorption as a result of the Pt nanoparticle surface modification and the polyelectrolyte environment.
引用
收藏
页码:11616 / 11621
页数:6
相关论文
共 34 条
[1]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[2]   ''Cubic'' colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Henglein, A ;
ElSayed, MA .
CHEMISTRY OF MATERIALS, 1996, 8 (06) :1161-&
[3]   Influence of the ionic strength on the polyelectrolyte multilayers' permeability [J].
Antipov, AA ;
Sukhorukov, GB ;
Möhwald, H .
LANGMUIR, 2003, 19 (06) :2444-2448
[4]  
BARD AJ, 2001, ELECTROCHEMICAL METH, pCH13
[5]   Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes [J].
Barreira, SVP ;
García-Morales, V ;
Pereira, CM ;
Manzanares, JA ;
Silva, F .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (46) :17973-17982
[6]  
CLAVILIER J, 1988, ACS SYM SER, V378, P202
[7]   PROPENE HYDROGENATION ON LOW-TEMPERATURE REDUCED PT/TIO2 - EFFECTS OF TIO2 PHASES AND H-2 TREATMENT ON SPECIFIC CATALYTIC ACTIVITY [J].
COCCO, G ;
CAMPOSTRINI, R ;
CABRAS, MA ;
CARTURAN, G .
JOURNAL OF MOLECULAR CATALYSIS, 1994, 94 (03) :299-310
[8]   THE ELECTROSORPTION AND THE ELECTRODESORPTION OF HYDROGEN AND OXYGEN AT THE POLYCRYSTALLINE PLATINUM-ALKALINE CARBONATE INTERFACE [J].
DUARTE, MY ;
MARTINS, ME ;
ARVIA, AJ .
ELECTROCHIMICA ACTA, 1980, 25 (12) :1613-1618
[9]   Model catalysts fabricated using electron beam lithography and pulsed laser deposition [J].
Eppler, AS ;
Rupprechter, G ;
Guczi, L ;
Somorjai, GA .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (48) :9973-9977
[10]   Doping-controlled ion diffusion in polyelectrolyte multilayers: Mass transport in reluctant exchangers [J].
Farhat, TR ;
Schlenoff, JB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (15) :4627-4636