SpliceTrap: a method to quantify alternative splicing under single cellular conditions

被引:68
作者
Wu, Jie [3 ,4 ]
Akerman, Martin [3 ]
Sun, Shuying [3 ]
McCombie, W. Richard [3 ]
Krainer, Adrian R. [3 ]
Zhang, Michael Q. [1 ,2 ]
机构
[1] Univ Texas Dallas, Ctr Syst Biol, Dept Mol & Cell Biol, Richardson, TX 75080 USA
[2] Tsinghua Univ, TNLIST, Ctr Synthet & Syst Biol, Bioinformat Div, Beijing 100084, Peoples R China
[3] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[4] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家卫生研究院;
关键词
RNA-SEQ; GENOME; MICROARRAYS; EXPRESSION; DNA; TRANSCRIPTOME; COMPLEXITY; PREDICTION; SEQUENCES; REVEALS;
D O I
10.1093/bioinformatics/btr508
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Alternative splicing (AS) is a pre-mRNA maturation process leading to the expression of multiple mRNA variants from the same primary transcript. More than 90% of human genes are expressed via AS. Therefore, quantifying the inclusion level of every exon is crucial for generating accurate transcriptomic maps and studying the regulation of AS. Results: Here we introduce SpliceTrap, a method to quantify exon inclusion levels using paired-end RNA-seq data. Unlike other tools, which focus on full-length transcript isoforms, SpliceTrap approaches the expression-level estimation of each exon as an independent Bayesian inference problem. In addition, SpliceTrap can identify major classes of alternative splicing events under a single cellular condition, without requiring a background set of reads to estimate relative splicing changes. We tested SpliceTrap both by simulation and real data analysis, and compared it to state-of-the-art tools for transcript quantification. SpliceTrap demonstrated improved accuracy, robustness and reliability in quantifying exon-inclusion ratios. Conclusions: SpliceTrap is a useful tool to study alternative splicing regulation, especially for accurate quantification of local exon-inclusion ratios from RNA-seq data.
引用
收藏
页码:3010 / 3016
页数:7
相关论文
共 27 条
[1]   Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy [J].
Baeumer, Dirk ;
Lee, Sheena ;
Nicholson, George ;
Davies, Joanna L. ;
Parkinson, Nicholas J. ;
Murray, Lyndsay M. ;
Gillingwater, Thomas H. ;
Ansorge, Olaf ;
Davies, Kay E. ;
Talbot, Kevin .
PLOS GENETICS, 2009, 5 (12)
[2]   Alternative splicing and genome complexity [J].
Brett, D ;
Pospisil, H ;
Valcárcel, J ;
Reich, J ;
Bork, P .
NATURE GENETICS, 2002, 30 (01) :29-30
[3]   Prediction of complete gene structures in human genomic DNA [J].
Burge, C ;
Karlin, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 268 (01) :78-94
[4]   Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines [J].
Castle, John C. ;
Zhang, Chaolin ;
Shah, Jyoti K. ;
Kulkarni, Amit V. ;
Kalsotra, Auinash ;
Cooper, Thomas A. ;
Johnson, Jason M. .
NATURE GENETICS, 2008, 40 (12) :1416-1425
[5]   Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays [J].
Clark, TA ;
Sugnet, CW ;
Ares, M .
SCIENCE, 2002, 296 (5569) :907-910
[6]   Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses [J].
Fullwood, Melissa J. ;
Wei, Chia-Lin ;
Liu, Edison T. ;
Ruan, Yijun .
GENOME RESEARCH, 2009, 19 (04) :521-532
[7]   Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences [J].
Goecks, Jeremy ;
Nekrutenko, Anton ;
Taylor, James .
GENOME BIOLOGY, 2010, 11 (08)
[8]   Genome wide identification and classification of alternative splicing based on EST data [J].
Gupta, S ;
Zink, D ;
Korn, B ;
Vingron, M ;
Haas, SA .
BIOINFORMATICS, 2004, 20 (16) :2579-2585
[9]   Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs [J].
Guttman, Mitchell ;
Garber, Manuel ;
Levin, Joshua Z. ;
Donaghey, Julie ;
Robinson, James ;
Adiconis, Xian ;
Fan, Lin ;
Koziol, Magdalena J. ;
Gnirke, Andreas ;
Nusbaum, Chad ;
Rinn, John L. ;
Lander, Eric S. ;
Regev, Aviv .
NATURE BIOTECHNOLOGY, 2010, 28 (05) :503-U166
[10]   Statistical inferences for isoform expression in RNA-Seq [J].
Jiang, Hui ;
Wong, Wing Hung .
BIOINFORMATICS, 2009, 25 (08) :1026-1032