Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β

被引:732
作者
Yang, X
Letterio, JJ
Lechleider, RJ
Chen, L
Hayman, R
Gu, H
Roberts, AB
Deng, CX
机构
[1] NIDDK, Genet Dev & Dis Branch, NIH, Bethesda, MD 20892 USA
[2] NCI, Lab Cell Regulat & Carcinogenesis, NIH, Bethesda, MD 20892 USA
[3] NIAID, Immunol Lab, NIH, Bethesda, MD 20892 USA
[4] Inst Biotechnol, Beijing 100071, Peoples R China
关键词
bacterial infections; gene targeting; inflammation; SMAD3; TGF-beta signaling;
D O I
10.1093/emboj/18.5.1280
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SMAD3 is one of the intracellular mediators that transduces signals from transforming growth factor-beta (TGF-beta) and activin receptors. We show that SMAD3 mutant mice generated by gene targeting die between 1 and 8 months due to a primary defect in immune function. Symptomatic mice exhibit thymic involution, enlarged lymph nodes, and formation of bacterial abscesses adjacent to mucosal surfaces. Mutant T cells exhibit an activated phenotype in vivo, and are not inhibited by TGF-beta 1 in vitro. Mutant neutrophils are also impaired in their chemotactic response toward TGF-beta, Chronic intestinal inflammation is infrequently associated with colonic adenocarcinoma in mice older than 6 months of age. These data suggest that SMAD3 has an important role in TGF-beta-mediated regulation of T cell activation and mucosal immunity, and that the loss of these functions is responsible for chronic infection and the lethality of Smad3-null mice.
引用
收藏
页码:1280 / 1291
页数:12
相关论文
共 61 条
[1]   T beta RI phosphorylation of Smad2 on Ser(465) and Ser(467) is required for Smad2-Smad4 complex formation and signaling [J].
Abdollah, S ;
MaciasSilva, M ;
Tsukazaki, T ;
Hayashi, H ;
Attisano, L ;
Wrana, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27678-27685
[2]   Genomic structure of the human Smad3 gene and its infrequent alterations in colorectal cancers [J].
Arai, T ;
Akiyama, Y ;
Okabe, S ;
Ando, M ;
Endo, M ;
Yuasa, Y .
CANCER LETTERS, 1998, 122 (1-2) :157-163
[3]   A novel mesoderm inducer, Madr2 functions in the activin signal transduction pathway [J].
Baker, JC ;
Harland, RM .
GENES & DEVELOPMENT, 1996, 10 (15) :1880-1889
[4]  
BRANDES ME, 1991, J IMMUNOL, V147, P1600
[5]   Smad4 and FAST-1 in the assembly of activin-responsive factor [J].
Chen, X ;
Weisberg, E ;
Fridmacher, V ;
Watanabe, M ;
Naco, G ;
Whitman, M .
NATURE, 1997, 389 (6646) :85-89
[6]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[7]   PERIPHERAL DELETION OF ANTIGEN-REACTIVE T-CELLS IN ORAL TOLERANCE [J].
CHEN, YH ;
INOBE, J ;
MARKS, R ;
GONNELLA, P ;
KUCHROO, VK ;
WEINER, HL .
NATURE, 1995, 376 (6536) :177-180
[8]   TRANSFORMING GROWTH FACTOR-BETA SPECIFICALLY ENHANCES IGA PRODUCTION BY LIPOPOLYSACCHARIDE-STIMULATED MURINE LYMPHOCYTES-B [J].
COFFMAN, RL ;
LEBMAN, DA ;
SHRADER, B .
JOURNAL OF EXPERIMENTAL MEDICINE, 1989, 170 (03) :1039-1044
[9]  
CURNUTTE JT, 1993, HEMATOLOGY INFANCY C, P904
[10]   MURINE FGFR-1 IS REQUIRED FOR EARLY POSTIMPLANTATION GROWTH AND AXIAL ORGANIZATION [J].
DENG, CX ;
WYNSHAWBORIS, A ;
SHEN, MM ;
DAUGHERTY, C ;
ORNITZ, DM ;
LEDER, P .
GENES & DEVELOPMENT, 1994, 8 (24) :3045-3057