Functional interactions and signaling properties of mammalian DNA mismatch repair proteins

被引:151
作者
Bellacosa, A
机构
[1] Fox Chase Canc Ctr, Div Populat Sci, Human Genet Program, Philadelphia, PA 19111 USA
[2] Univ Cattolica Sacro Cuore, Sch Med, Dept Med Genet, I-00168 Rome, Italy
关键词
mismatch repair; DNA damage; apoptosis; signal transduction;
D O I
10.1038/sj.cdd.4400948
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mismatch repair (MMR) system promotes genomic fidelity by repairing base-base mismatches, insertion-deletion loops and heterologies generated during DNA replication and recombination. This function is critically dependent on the assembling of multimeric complexes involved in mismatch recognition and signal transduction to downstream repair events. In addition, MMR proteins coordinate a complex network of physical and functional interactions that mediate other DNA transactions, such as transcription-coupled repair, base excision repair and recombination. MMR proteins are also involved in activation of cell cycle checkpoint and induction of apoptosis when DNA damage overwhelms a critical threshold. For this reason, they play a role in cell death by alkylating agents and other chemotherapeutic drugs, including cisplatin. Inactivation of MMR genes in hereditary and sporadic cancer is associated with a mutator phenotype and inhibition of apoptosis. In the future, a deeper understanding of the molecular mechanisms and functional interactions of MMR proteins will lead to the development of more effective cancer prevention and treatment strategies.
引用
收藏
页码:1076 / 1092
页数:17
相关论文
共 120 条
[1]   BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair [J].
Abbott, DW ;
Thompson, ME ;
Robinson-Benion, C ;
Tomlinson, G ;
Jensen, RA ;
Holt, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (26) :18808-18812
[2]   MutS mediates heteroduplex loop formation by a translocation mechanism [J].
Allen, DJ ;
Makhov, A ;
Grilley, M ;
Taylor, J ;
Thresher, R ;
Modrich, P ;
Griffith, JD .
EMBO JOURNAL, 1997, 16 (14) :4467-4476
[3]   Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency [J].
Bader, S ;
Walker, M ;
Heindrich, B ;
Bird, A ;
Bird, C ;
Hooper, M ;
Wyllie, A .
ONCOGENE, 1999, 18 (56) :8044-8047
[4]   Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over [J].
Baker, SM ;
Plug, AW ;
Prolla, TA ;
Bronner, CE ;
Harris, AC ;
Yao, X ;
Christie, DM ;
Monell, C ;
Arnheim, N ;
Bradley, A ;
Ashley, T ;
Liskay, RM .
NATURE GENETICS, 1996, 13 (03) :336-342
[5]   MALE-MICE DEFECTIVE IN THE DNA MISMATCH REPAIR GENE PMS2 EXHIBIT ABNORMAL CHROMOSOME SYNAPSIS IN MEIOSIS [J].
BAKER, SM ;
BRONNER, CE ;
ZHANG, L ;
PLUG, AW ;
ROBATZEK, M ;
WARREN, G ;
ELLIOTT, EA ;
YU, JA ;
ASHLEY, T ;
ARNHEIM, N ;
FLAVELL, RA ;
LISKAY, RM .
CELL, 1995, 82 (02) :309-319
[6]   Crystal structure and ATPase activity of MutL: Implications for DNA repair and mutagenesis [J].
Ban, C ;
Yang, W .
CELL, 1998, 95 (04) :541-552
[7]   Transformation of MutL by ATP binding and hydrolysis: A switch in DNA mismatch repair [J].
Ban, C ;
Junop, M ;
Yang, W .
CELL, 1999, 97 (01) :85-97
[8]   Structural basis for MutH activation in E-coli mismatch repair and relationship of MutH to restriction endonucleases [J].
Ban, C ;
Yang, W .
EMBO JOURNAL, 1998, 17 (05) :1526-1534
[9]   MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1 [J].
Bellacosa, A ;
Cicchillitti, L ;
Schepis, F ;
Riccio, A ;
Yeung, AT ;
Matsumoto, Y ;
Golemis, EA ;
Genuardi, M ;
Neri, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3969-3974
[10]   Role of MED1 (MBD4) gene in DNA repair and human cancer [J].
Bellacosa, A .
JOURNAL OF CELLULAR PHYSIOLOGY, 2001, 187 (02) :137-144