Robust control system design using random search and genetic algorithms

被引:62
作者
Marrison, CI [1 ]
Stengel, RF [1 ]
机构
[1] PRINCETON UNIV,DEPT MECH & AEROSP ENGN,PRINCETON,NJ 08544
关键词
genetic algorithms; probabilistic methods; robust control design and analysis;
D O I
10.1109/9.587338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Random search and genetic algorithms find compensators to minimize stochastic robustness cost functions. Statistical tools are incorporated in the algorithms, allowing intelligent decisions to be based on ''noisy'' Monte Carlo estimates. The genetic algorithm includes clustering analysis to improve performance and is significantly better than the random search for this application. The algorithm is used to design a compensator for a benchmark problem, producing a control law with excellent stability and performance robustness.
引用
收藏
页码:835 / 839
页数:5
相关论文
共 15 条
[1]  
[Anonymous], IEEE T AUTOMATIC CON
[2]  
De Jong K. A., 1975, ANAL BEHAV CLASS GEN
[3]  
EFRON B, 1985, JACKKNIFE BOOTSTRAP
[4]  
Fitzpatrick J. M., 1988, Machine Learning, V3, P101
[5]  
Goldberg DE, 1989, GENETIC ALGORITHMS S
[6]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[7]  
Kalos M. H., 1986, MONTE CARLO METHODS
[8]  
KRISHNAKUMAR K, 1992, P 1992 AIAA GNC C HI, P728
[9]   STOCHASTIC ROBUSTNESS SYNTHESIS APPLIED TO A BENCHMARK CONTROL PROBLEM [J].
MARRISON, CI ;
STENGEL, RF .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1995, 5 (01) :13-31
[10]  
MARRISON CI, 1995, MAE2001T PRINC U