Interaction between water and polar groups of the helix backbone: An important determinant of helix propensities

被引:108
作者
Luo, PZ [1 ]
Baldwin, RL [1 ]
机构
[1] Stanford Univ, Beckman Ctr, Dept Biochem, Med Ctr, Stanford, CA 94305 USA
关键词
D O I
10.1073/pnas.96.9.4930
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report an enthalpic factor involved in determining helix propensities of nonpolar amino acids, Thermal unfolding curves of the five 13-residue peptides, AcKA(4)XA(4)KGY-NH2 (X = Ala, Leu, Ile, Val, Gly), have been measured by using CD in water/trifluoroethanol (TFE) mixtures. The peptide helix contents show that the rank order of helix propensities changes with temperature: although Ala has the highest helix propensity at 0 degrees C in all TFE concentrations, it is lower than Leu, Ile, and Val at 50 degrees C in 20% TFE, This change is attributed to shielding by nonpolar side chains of the interaction between water and polar groups in the helix backbone for the following reasons, (i) Helix content is directly related to helix propensity for these designed peptides because side-chain-side-chain interactions are absent. (ii) The change in rank order with temperature is enthalpic in origin: in water, the apparent enthalpy of helix formation calculated from the thermal unfolding curves varies widely among the five peptides and has the same rank order as the helix propensities at 0 degrees C, The rank order does not result from burial of nonpolar surface area because the calculated heat capacity change (Delta Cp) on helix formation is opposite in sign from the expected Delta Cp. (iii) A nonpolar side chain can exclude water from interacting with helix polar groups, according to calculations of water-accessible surface area, and the polar interaction between water and peptide polar groups is entirely enthalpic, as shown by amide transfer data.
引用
收藏
页码:4930 / 4935
页数:6
相关论文
共 31 条
[1]  
[Anonymous], CIBA F S
[3]   Is protein folding hierarchic? I. Local structure and peptide folding [J].
Baldwin, RL ;
Rose, GD .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (01) :26-33
[4]   THE ROLE OF HYDROGEN-BONDS IN PROTEIN FOLDING AND PROTEIN ASSOCIATION [J].
BENNAIM, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (03) :1437-1444
[5]   ALANINE SCANNING MUTAGENESIS OF THE ALPHA-HELIX-115-123 OF PHAGE-T4 LYSOZYME - EFFECTS ON STRUCTURE, STABILITY AND THE BINDING OF SOLVENT [J].
BLABER, M ;
BAASE, WA ;
GASSNER, N ;
MATTHEWS, BW .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 246 (02) :317-330
[6]   STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY [J].
BLABER, M ;
ZHANG, XJ ;
MATTHEWS, BW .
SCIENCE, 1993, 260 (5114) :1637-1640
[7]  
Bodkin MJ, 1996, BIOPOLYMERS, V39, P43, DOI 10.1002/(SICI)1097-0282(199607)39:1<43::AID-BIP5>3.0.CO
[8]  
2-V
[9]   STABILITY OF ALPHA-HELICES [J].
CHAKRABARTTY, A ;
BALDWIN, RL .
ADVANCES IN PROTEIN CHEMISTRY, VOL 46, 1995, 46 :141-176
[10]   LARGE DIFFERENCES IN THE HELIX PROPENSITIES OF ALANINE AND GLYCINE [J].
CHAKRABARTTY, A ;
SCHELLMAN, JA ;
BALDWIN, RL .
NATURE, 1991, 351 (6327) :586-588