Discrete conservation and discrete maximum principle for elliptic PDEs

被引:18
作者
Bertolazzi, E [1 ]
机构
[1] Univ Trent, Dipartimento Ingn Meccan & Strutturale, Lab Matemat Applicata & Meccan Computaz, I-38050 Trento, Italy
关键词
D O I
10.1142/S0218202598000317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of finite volume numerical schemes for the solution of self-adjoint elliptic equations is described. The main feature of the schemes is that numerical solutions share both discrete conservation and discrete strong maximum principle without restriction on the differential operator or on the volume elements.
引用
收藏
页码:685 / 711
页数:27
相关论文
共 16 条
[1]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[2]  
BABA K, 1981, RAIRO-ANAL NUMER-NUM, V15, P3
[3]  
CAFFARELLI LA, 1989, FULLY NONLINEAR ELLI
[4]  
GILBARD D, 1977, ELLIPTIC PARTIAL DIF
[5]   SOME REMARKS ON THE DISCRETE MAXIMUM-PRINCIPLE FOR FINITE-ELEMENTS OF HIGHER-ORDER [J].
HOHN, W ;
MITTELMANN, HD .
COMPUTING, 1981, 27 (02) :145-154
[6]  
McCormick SF, 1989, MULTILEVEL ADAPTIVE
[7]  
OHMORI K, 1984, RAIRO-ANAL NUMER-NUM, V18, P309
[8]  
Ortega JM., 1970, ITERATIVE SOLUTION N
[9]  
Pao C.V., 1992, NONLINEAR PARABOLIC
[10]  
Protter M.H., 1967, Maximum Principles in Differential Equations