A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements

被引:131
作者
Gao, M
Wilusz, CJ
Peltz, SW
Wilusz, J
机构
[1] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Microbiol & Mol Genet, Newark, NJ 07103 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet & Microbiol, Piscataway, NJ 08854 USA
关键词
AU-rich elements; cap-binding proteins; decapping; mRNA turnover; poly(A)-binding proteins;
D O I
10.1093/emboj/20.5.1134
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While decapping plays a major role in mRNA turnover in yeast, biochemical evidence for a similar activity in mammalian cells has been elusive. We have now identified a decapping activity in HeLa cytoplasmic extracts that releases (7me)GDP from capped transcripts. Decapping is activated in extracts by the addition of (7me)GpppG, which specifically sequesters cap-binding proteins such as eIF4E and the deadenylase DAN/PARN. Similar to lit vivo observations, the presence of a poly(A) tail represses decapping of RNAs in vitro in a poly(A)-binding protein-dependent fashion. AU-rich elements (AREs), which act as regulators of mRNA stability in vivo, are potent stimulators of decapping in vitro. The stimulation of decapping by AREs requires sequence-specific ARE-binding proteins. These data suggest that cap recognition and decapping play key roles in mediating mRNA turnover in mammalian cells.
引用
收藏
页码:1134 / 1143
页数:10
相关论文
共 60 条
[1]   The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases [J].
Allmang, C ;
Petfalski, E ;
Podtelejnikov, A ;
Mann, M ;
Tollervey, D ;
Mitchell, P .
GENES & DEVELOPMENT, 1999, 13 (16) :2148-2158
[2]   PURIFICATION AND CHARACTERIZATION OF PROTEIN-SYNTHESIS INITIATION-FACTOR EIF-4E FROM THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ALTMANN, M ;
EDERY, I ;
SONENBERG, N ;
TRACHSEL, H .
BIOCHEMISTRY, 1985, 24 (22) :6085-6089
[3]   The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex [J].
Anderson, JSJ ;
Parker, R .
EMBO JOURNAL, 1998, 17 (05) :1497-1506
[4]   An essential component of the decapping enzyme required for normal rates of mRNA turnover [J].
Beelman, CA ;
Stevens, A ;
Caponigro, G ;
LaGrandeur, TE ;
Hatfield, L ;
Fortner, DM ;
Parker, R .
NATURE, 1996, 382 (6592) :642-646
[5]   The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p [J].
Bonnerot, C ;
Boeck, R ;
Lapeyre, B .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (16) :5939-5946
[6]   Identification of a regulated pathway for nuclear pre-mRNA turnover [J].
Bousquet-Antonelli, C ;
Presutti, C ;
Tollervey, D .
CELL, 2000, 102 (06) :765-775
[7]   A Sm-like protein complex that participates in mRNA degradation [J].
Bouveret, E ;
Rigaut, G ;
Shevchenko, A ;
Wilm, M ;
Séraphin, B .
EMBO JOURNAL, 2000, 19 (07) :1661-1671
[9]   Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae [J].
Caponigro, G ;
Parker, R .
MICROBIOLOGICAL REVIEWS, 1996, 60 (01) :233-+
[10]   MULTIPLE FUNCTIONS FOR POLY(A)-BINDING PROTEIN IN MESSENGER-RNA DECAPPING AND DEADENYLATION IN YEAST [J].
CAPONIGRO, G ;
PARKER, R .
GENES & DEVELOPMENT, 1995, 9 (19) :2421-2432