Numerical study on PEMFC's geometrical parameters under different humidifying conditions

被引:20
作者
Matamoros, Luis [1 ]
Brueggemann, Dieter [1 ]
机构
[1] Univ Bayreuth, Lehrstuhl Tech Thermodynam & Transportprozesse, D-95440 Bayreuth, Germany
关键词
PEM fuel cell; modeling; simulation; geometrical parameters; polymer electrolyte; saturation;
D O I
10.1016/j.jpowsour.2007.07.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Steady-state and three-dimensional simulations were carried out to study the influences of geometrical parameters on the performance of PEMFC under different hydrating conditions. Flow fields, species transport, transport of water in polymer membrane and movement of liquid water in cathode and anode porous layers were determined, in order to accomplish a complete estimation of ohmic and concentration losses of PEMFC power. The geometrical parameters were thickness of the polymer membrane, cathode catalyst layer as well as gas channel to rib width ratio. Every simulation was made under different relative humidities of inlet flows (50 and 100%) for every change of characteristic length. Results show that the influence of the geometrical parameters on ohmic and concentration losses is of considerable importance. The performance of PEMFC is seriously affected under dehydrating conditions. However, such performance may be considerably improved by using suitable geometrical parameters. Cathode and anode liquid saturation may not only affect the transport of species, but also the polymer electrolyte water content. These results show the importance of simultaneously calculating both the water absorption and desorption through the polymer electrolyte and the liquid saturation in the cathode and anode porous mediums to obtain an actual view of ohmic and concentration losses of the PEMFC performance. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 37 条
[1]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[2]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[3]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[4]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245
[5]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[6]  
CLEGHORN S, 2000, J APPL ELECTROCHEM, V28, P663
[7]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[8]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[9]   Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells [J].
Guvelioglu, GH ;
Stenger, HG .
JOURNAL OF POWER SOURCES, 2005, 147 (1-2) :95-106
[10]   WATER-UPTAKE OF PERFLUOROSULFONIC ACID MEMBRANES FROM LIQUID WATER AND WATER-VAPOR [J].
HINATSU, JT ;
MIZUHATA, M ;
TAKENAKA, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (06) :1493-1498