Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10:: formulation development and bioavailability assessment

被引:461
作者
Kommuru, TR
Gurley, B
Khan, MA
Reddy, IK
机构
[1] Texas Tech Univ, Hlth Sci Ctr, Sch Pharm, Amarillo, TX 79106 USA
[2] Univ Arkansas Med Sci, Coll Pharm, Little Rock, AR 72205 USA
[3] Univ Louisiana, Sch Pharm, Monroe, LA 71209 USA
关键词
self-emulsifying drug delivery systems; SEDDS; coenzyme Q(10); emulsions; polyglycolyzed glycerides; bioavailability;
D O I
10.1016/S0378-5173(00)00614-1
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The goals of our investigations are to develop and characterize self-emulsifying drug delivery systems (SEDDS) of coenzyme Q(10) (CoQ(10)), using polyglycolyzed glycerides (PGG) as emulsifiers and to evaluate their bioavailability in dogs. Solubility of CoQ(10) was determined in various oils and surfactants. SEDDS consisted of oil, a surfactant and a cosurfactant. Four types of self-emulsifying formulations were prepared using two oils (Myvacet 9-45 and Captex-200), two emulsifiers (Labrafac CM-10 and Labrasol) and a cosurfactant (lauroglycol). In all the formulations, the level of CoQ(10) was fixed at 5.66% w/w of the vehicle. The in vitro self-emulsification properties and droplet size analysis of these formulations upon their addition to water under mild agitation conditions were studied. Pseudo-ternary phase diagrams were constructed identifying the efficient self-emulsification region. From these studies, an optimized formulation was selected and its bioavailability was compared with a powder formulation in dogs. Medium chain oils and Myvacet 9-45 provided higher solubility than long chain oils. Efficient and better self-emulsification processes were observed for the systems containing Labrafac CM-10 than formulations containing Labrasol. Addition of a cosurfactant improved the spontaneity of self-emulsification. From these studies, an optimized formulation consisting of Myvacet 9-45 (40%), Labrasol (50%) and lauroglycol (10%) was selected for its bioavailability assessment. A two-fold increase in the bioavailability was observed for the self-emulsifying system compared to a powder formulation. SEDDS have improved the bioavailability of CoQ(10) significantly. The data suggest the potential use of SEDDS to provide an efficient way of improving oral absorption of lipophilic drugs. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:233 / 246
页数:14
相关论文
共 44 条
[1]  
ALRAZZAK LA, 1999, Patent No. 5876749
[2]  
ARTHURSSON P, 1991, BIOCH BIOPHYS COMMUN, V175, P880
[4]   SELF-EMULSIFYING DRUG DELIVERY SYSTEMS - FORMULATION AND BIOPHARMACEUTIC EVALUATION OF AN INVESTIGATIONAL LIPOPHILIC COMPOUND [J].
CHARMAN, SA ;
CHARMAN, WN ;
ROGGE, MC ;
WILSON, TD ;
DUTKO, FJ ;
POUTON, CW .
PHARMACEUTICAL RESEARCH, 1992, 9 (01) :87-93
[5]   TRANSPORT OF LIPOPHILIC MOLECULES BY THE INTESTINAL LYMPHATIC-SYSTEM [J].
CHARMAN, WN ;
STELLA, VJ .
ADVANCED DRUG DELIVERY REVIEWS, 1991, 7 (01) :1-14
[6]  
CHO MJ, 1998, Patent No. 5834017
[7]  
CONSTANTINIDES PP, 1985, PHARM RES, V12, P161
[8]   AN INVESTIGATION INTO THE MECHANISMS OF SELF-EMULSIFICATION USING PARTICLE-SIZE ANALYSIS AND LOW-FREQUENCY DIELECTRIC-SPECTROSCOPY [J].
CRAIG, DQM ;
BARKER, SA ;
BANNING, D ;
BOOTH, SW .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1995, 114 (01) :103-110
[9]  
Crison J.R, 1999, United States Patent, Patent No. [US5993858A, 5993858, US 5993858 A]
[10]  
Eccleston G. M., 1992, ENCY PHARM TECHNOLOG, V9, P375