A spherical-harmonics solution for radiative-transfer problems with reflecting boundaries and internal sources

被引:19
作者
Barichello, LB [1 ]
Garcia, RDM
Siewert, CE
机构
[1] Univ Fed Rio Grande Sul, Inst Matemat, BR-91590900 Porto Alegre, RS, Brazil
[2] Inst Estudos Avancados, Ctr Tecn Aeroespacial, BR-12231970 Sao Jose Dos Campos, SP, Brazil
[3] N Carolina State Univ, Dept Math, Ctr Res Sci Computat, Raleigh, NC 27695 USA
关键词
D O I
10.1016/S0022-4073(97)00176-3
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spherical-harmonics method, including some recent improvements, is used to establish the complete solution for a general problem concerning radiative transfer in a plane-parallel medium. An L-th order Legendre expansion of the phase function is allowed, internal sources and reflecting boundaries are included in the model, and since a non-normally incident beam is impinging on one surface, all components in a Fourier decomposition of the intensity are required in the solution. Numerical results for two test problems are reported. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 15 条
[1]   A HIGH-ORDER SPHERICAL-HARMONICS SOLUTION TO THE STANDARD PROBLEM IN RADIATIVE-TRANSFER [J].
BENASSI, M ;
GARCIA, RDM ;
KARP, AH ;
SIEWERT, CE .
ASTROPHYSICAL JOURNAL, 1984, 280 (02) :853-864
[2]  
Chandrasekhar S, 1950, RAD TRANSFER
[3]  
DAVE JV, 1975, J ATMOS SCI, V32, P790, DOI 10.1175/1520-0469(1975)032<0790:ADSOTS>2.0.CO
[4]  
2
[5]  
Davison B., 1957, Neutron transport theory, International series of monographs on physics
[6]   COMPARISON OF VARIOUS METHODS FOR SOLVING EQUATION OF TRANSFER OR RADIATION IN SCATTERING MEDIUM [J].
DEVAUX, C ;
FOUQUART, Y ;
HERMAN, M ;
LENOBLE, J .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1973, 13 (12) :1421-1431
[7]   THE COMPLETE SOLUTION FOR RADIATIVE-TRANSFER PROBLEMS WITH REFLECTING BOUNDARIES AND INTERNAL SOURCES [J].
DEVAUX, C ;
SIEWERT, CE ;
YUAN, YL .
ASTROPHYSICAL JOURNAL, 1982, 253 (02) :773-784
[8]   ON COMPUTING THE CHANDRASEKHAR POLYNOMIALS IN HIGH-ORDER AND HIGH DEGREE [J].
GARCIA, RDM ;
SIEWERT, CE .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1990, 43 (03) :201-205
[9]  
Gradshteyn I.S., 1980, TABLE INTEGRALS SERI
[10]  
Kaper H. G., 1970, Journal of Computational Physics, V6, P288, DOI 10.1016/0021-9991(70)90026-4