Different roles of α- and β-branch xanthophylls in photosystem assembly and photoprotection

被引:124
作者
Dall'Osto, Luca
Fiore, Alessia
Cazzaniga, Stefano
Giuliano, Giovanni
Bassi, Roberto
机构
[1] Univ Verona, Dipartimento Sci & Tecnol, I-37134 Verona, Italy
[2] Ctr Ric Casaccia, Dipartimento Biotecnol, I-00100 Rome, Italy
关键词
D O I
10.1074/jbc.M704729200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Xanthophylls ( oxygenated carotenoids) are essential components of the plant photosynthetic apparatus, where they act in photosystem assembly, light harvesting, and photoprotection. Nevertheless, the specific function of individual xanthophyll species awaits complete elucidation. In this work, we analyze the photosynthetic phenotypes of two newly isolated Arabidopsis mutants in carotenoid biosynthesis containing exclusively alpha-branch (chy1chy2lut5)or beta-branch (chy1chy2lut2) xanthophylls. Both mutants show complete lack of qE, the rapidly reversible component of nonphotochemical quenching, and high levels of photoinhibition and lipid peroxidation under photooxidative stress. Both mutants are much more photosensitive than npq1lut2, which contains high levels of viola- and neoxanthin and a higher stoichiometry of light-harvesting proteins with respect to photosystem II core complexes, suggesting that the content in light-harvesting complexes plays an important role in photoprotection. In addition, chy1chy2lut5, which has lutein as the only xanthophyll, shows unprecedented photosensitivity even in low light conditions, reduced electron transport rate, enhanced photobleaching of isolated LHCII complexes, and a selective loss of CP26 with respect to chy1chy2lut2, highlighting a specific role of beta-branch xanthophylls in photoprotection and in qE mechanism. The stronger photosystem II photoinhibition of both mutants correlates with the higher rate of singlet oxygen production from thylakoids and isolated light-harvesting complexes, whereas carotenoid composition of photosystem II core complex was not influential. In depth analysis of the mutant phenotypes suggests that alpha-branch ( lutein) and beta-branch ( zeaxanthin, violaxanthin, and neoxanthin) xanthophylls have distinct and complementary roles in antenna protein assembly and in the mechanisms of photoprotection.
引用
收藏
页码:35056 / 35068
页数:13
相关论文
共 72 条
[1]   Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: Implications for the mechanism of protective energy dissipation [J].
Andersson, J ;
Walters, RG ;
Horton, P ;
Jansson, S .
PLANT CELL, 2001, 13 (05) :1193-1204
[2]   RECOVERY FROM PHOTOINHIBITION IN PEAS (PISUM-SATIVUM L) ACCLIMATED TO VARYING GROWTH IRRADIANCES - ROLE OF D1 PROTEIN-TURNOVER [J].
ARO, EM ;
MCCAFFERY, S ;
ANDERSON, JM .
PLANT PHYSIOLOGY, 1994, 104 (03) :1033-1041
[3]   Stoichiometry of LHCI antenna polypeptides and characterization of gap and linker pigments in higher plants Photosystem I [J].
Ballottari, M ;
Govoni, C ;
Caffarri, S ;
Morosinotto, T .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (23-24) :4659-4665
[4]   Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation [J].
Ballottari, Matteo ;
Dall'Osto, Luca ;
Morosinotto, Tomas ;
Bassi, Roberto .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (12) :8947-8958
[5]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[6]   Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress [J].
Baroli, I ;
Do, AD ;
Yamane, T ;
Niyogi, KK .
PLANT CELL, 2003, 15 (04) :992-1008
[7]   Photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas [J].
Baroli, I ;
Gutman, BL ;
Ledford, HK ;
Shin, JW ;
Chin, BL ;
Havaux, M ;
Niyogi, KK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (08) :6337-6344
[8]   Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites [J].
Bassi, R ;
Croce, R ;
Cugini, D ;
Sandonà, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10056-10061
[9]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[10]   State transitions and light adaptation require chloroplast thylakoid protein kinase STN7 [J].
Bellafiore, S ;
Barneche, F ;
Peltier, G ;
Rochaix, JD .
NATURE, 2005, 433 (7028) :892-895