Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2:: a study in microcosms of Holcus lanatus

被引:28
作者
Barnard, R
Leadley, PW
Lensi, R
Barthes, L
机构
[1] Univ Paris 11, CNRS, UMR 8079, Lab Ecol Systemat & Evolut, F-91405 Orsay, France
[2] CEFE, CNRS, UMR 5175, F-34293 Montpellier, France
来源
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY | 2005年 / 27卷 / 03期
关键词
global change; nitrification; denitrification; ammonium; nitrate;
D O I
10.1016/j.actao.2004.11.005
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The impact of elevated atmospheric CO2 concentrations on the nitrogen cycle was evaluated in a 2-month experiment in monospecific grassland microcosms (Holcus lanatus L.) grown on reconstituted grassland soil. The responses of the N pools in the plants, soil, and soil microbes were studied. The impact of high CO, on key stages of the N cycle, especially nitrification and denitrification processes, were also measured. Our study showed a strong plant response to high CO2: total biomass increased by 76% (P < 0.001) and root length density increased by 77% (P = 0.010). However, total plant N was not significantly modified by high CO2, because the percent N in the plant decreased by 40% (P < 0.001). We observed a large decrease in soil NO3- concentration under elevated CO2 (-50%; P = 0.002). Soil ammonium concentrations were much less affected by CO2 enrichment, and only in resin bags (-8%, P = 0.019). Soil nitrifying enzyme activity (NEA) had a tendency to increase (+17%; P = 0.061) and denitrifying enzyme activity (DEA) decreased (-12%; P = 0.013). We found evidence of increased microbial N sink (microbial N increased by 17%, P = 0.004). This and other studies suggest that rising CO2 often reduces soil nitrate concentrations, which may lead to decreased nitrate leaching. Elevated CO2 led to environmental conditions that were less favourable for denitrification in our study. (C) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 66 条
[1]  
Allen AS, 2000, ECOL APPL, V10, P437, DOI 10.1890/1051-0761(2000)010[0437:EOFACE]2.0.CO
[2]  
2
[3]   Fluxes of CH4 and N2O in aspen stands grown under ambient and twice-ambient CO2 [J].
Ambus, P ;
Robertson, GP .
PLANT AND SOIL, 1999, 209 (01) :1-8
[4]  
[Anonymous], 1979, METHODS STUDYING ROO
[5]   Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2 [J].
Arnone, JA ;
Bohlen, PJ .
OECOLOGIA, 1998, 116 (03) :331-335
[6]   Global change, nitrification, and denitrification: A review [J].
Barnard, R ;
Leadley, PW ;
Hungate, BA .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-13
[7]   Dynamics of nitrifying activities, denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO2 [J].
Barnard, R ;
Barthes, L ;
Le Roux, X ;
Leadley, PW .
NEW PHYTOLOGIST, 2004, 162 (02) :365-376
[8]   Atmospheric CO2 elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands [J].
Barnard, R ;
Barthes, L ;
Le Roux, X ;
Harmens, H ;
Raschi, A ;
Soussana, JF ;
Winkler, B ;
Leadley, PW .
GLOBAL CHANGE BIOLOGY, 2004, 10 (04) :488-497
[9]   Kinetics of nutrient uptake by roots: responses to global change [J].
Bassirirad, H .
NEW PHYTOLOGIST, 2000, 147 (01) :155-169
[10]   Differential responses of root uptake kinetics of NH4+ and NO3- to enriched atmospheric CO2 concentration in field-grown loblolly pine [J].
Bassirirad, H ;
Thomas, RB ;
Reynolds, JF ;
Strain, BR .
PLANT CELL AND ENVIRONMENT, 1996, 19 (03) :367-371