Local control for mesh morphing

被引:20
作者
Alexa, M [1 ]
机构
[1] Tech Univ Darmstadt, Dept Comp Sci, D-64283 Darmstadt, Germany
来源
INTERNATIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, PROCEEDING | 2001年
关键词
local control; meshes; morphing; features;
D O I
10.1109/SMA.2001.923392
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Mesh morphing techniques are capable of producing a sequence of meshes, gradually changing from a source to a target shape. However, current techniques do nor allow to describe the local behavior of the morph. A solution to this problem is presented. The main idea is to describe mesh geometry in a differential way, thus, insertion of local features from one shape into another does not suffer from difference in absolute coordinates. Besides interesting possibilities for animation the technique proves to be a powerful modeling tool.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 20 条
[1]   Merging polyhedral shapes with scattered features [J].
Alexa, M .
VISUAL COMPUTER, 2000, 16 (01) :26-37
[2]  
ALEXA M, 2000, SIGGRAPH 2000 P
[3]  
CARMEL E, 1998, VISUAL COMPUTER, V13
[4]  
De Berg M., 2000, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-662-03427-9
[5]  
DeCarlo D, 1996, PROC GRAPH INTERF, P194
[6]   How to morph tilings injectively [J].
Floater, MS ;
Gotsman, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 101 (1-2) :117-129
[7]  
Golub GH, 2013, Matrix Computations, V4
[8]  
Gregory A, 1998, COMP ANIM CONF PROC, P64, DOI 10.1109/CA.1998.681909
[9]   Three-dimensional geometric metamorphosis based on harmonic maps [J].
Kanai, T ;
Suzuki, H ;
Kimura, F .
VISUAL COMPUTER, 1998, 14 (04) :166-176
[10]   Metamorphosis of arbitrary triangular meshes [J].
Kanai, T ;
Suzuki, H ;
Kimura, F .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2000, 20 (02) :62-75