Incrementally maximising hypervolume for selection in multi-objective evolutionary algorithms

被引:26
作者
Bradstreet, Lucas [1 ]
While, Lyndon [1 ]
Barone, Luigi [1 ]
机构
[1] Univ Western Australia, Sch Comp Sci & Software Engn, Crawley 6009, Australia
来源
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS | 2007年
关键词
D O I
10.1109/CEC.2007.4424881
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several multi-objective evolutionary algorithms compare the hypervolumes of different sets of points during their operation, usually for selection or archiving purposes. The basic requirement is to choose a subset of a front such that the hypervolume of that subset is maximised. We describe and evaluate three new algorithms based on incremental calculations of hypervolume using the new Incremental Hypervolume by Slicing Objectives (IHSO) algorithm: two greedy algorithms that respectively add or remove one point at a time from a front, and a local search that assesses entire subsets. Empirical evidence shows that using IHSO, the greedy algorithms are generally able to out-perform the local search and perform substantially better than previously published algorithms.
引用
收藏
页码:3203 / 3210
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 200001 IND I TECHN K
[2]  
Beume N., 2006, 21606 CI U DORTM
[3]  
BRADSTREET L, 2007, UWACSSE07001
[4]  
Bradstreet L, 2006, IEEE C EVOL COMPUTAT, P1729
[5]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[6]  
Emmerich M, 2005, LECT NOTES COMPUT SC, V3410, P62
[7]  
Knowles JD, 2003, IEEE C EVOL COMPUTAT, P2490
[8]  
LAUMANNS M, 2000, 2000 C EV COMP PISC, V1, P45
[9]  
Naujoks B, 2005, IEEE C EVOL COMPUTAT, P1282
[10]  
OVERMARS MH, 1988, IEEE S FDN COMP SCI, P550