Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism

被引:101
作者
van der Velden, AWM [1 ]
Velasquez, M [1 ]
Starnbach, MN [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Microbiol & Mol Genet, Boston, MA 02115 USA
关键词
D O I
10.4049/jimmunol.171.12.6742
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells provide a critical link between innate and acquired immunity. In this study, we demonstrate that the bacterial pathogen Salmonella enterica serovar Typhimurium can efficiently kill these professional phagocytes via a mechanism that is dependent on sipB and the Salmonella pathogenicity island 1-encoded type III protein secretion system. Rapid phosphatidylserine redistribution, caspase activation, and loss of plasma membrane integrity were characteristic of dendritic cells infected with wild-type Salmonella, but not sipB mutant bacteria. Caspase-1 was particularly important in this process because Salmonella-induced dendritic cell death was dramatically reduced in the presence of a caspase-1-specific inhibitor. Furthermore, dendritic cells obtained from caspase-1-deficient mice, but not heterozygous littermate control mice, were resistant to Salmonella-induced cytotoxicity. We hypothesize that Salmonella have evolved the ability to selectively kill professional APCs to combat, exploit, or evade immune defense mechanisms.
引用
收藏
页码:6742 / 6749
页数:8
相关论文
共 60 条
[1]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[2]   Salmonella induces macrophage death by caspase-1-dependent necrosis [J].
Brennan, MA ;
Cookson, BT .
MOLECULAR MICROBIOLOGY, 2000, 38 (01) :31-40
[3]   Genetic requirements for Salmonella-induced cytopathology in human monocyte-derived macrophages [J].
Browne, SH ;
Lesnick, ML ;
Guiney, DG .
INFECTION AND IMMUNITY, 2002, 70 (12) :7126-7135
[4]   Glycine protects against hepatocyte killing by KCN or hypoxia by preventing intracellular Na+ overload in the rat [J].
Carini, R ;
Bellomo, G ;
DeCesaris, MG ;
Albano, E .
HEPATOLOGY, 1997, 26 (01) :107-112
[5]   Salmonella spp are cytotoxic for cultured macrophages [J].
Chen, LM ;
Kaniga, K ;
Galan, JE .
MOLECULAR MICROBIOLOGY, 1996, 21 (05) :1101-1115
[6]   Interleukin-1β, interleukin-18, and the interleukin-1β converting enzyme [J].
Dinarello, CA .
MOLECULAR MECHANISMS OF FEVER, 1998, 856 :1-11
[7]  
Dong Z, 1997, AM J PATHOL, V151, P1205
[8]   Interleukin-18 and interleukin-1β:: Two cytokine substrates for ICE (Caspase-1) [J].
Fantuzzi, G ;
Dinarello, CA .
JOURNAL OF CLINICAL IMMUNOLOGY, 1999, 19 (01) :1-11
[9]   MUTANTS OF SALMONELLA-TYPHIMURIUM THAT CANNOT SURVIVE WITHIN THE MACROPHAGE ARE AVIRULENT [J].
FIELDS, PI ;
SWANSON, RV ;
HAIDARIS, CG ;
HEFFRON, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (14) :5189-5193
[10]   Protection by glycine against hypoxic injury of rat hepatocytes: inhibition of ion fluxes through nonspecific leaks [J].
Frank, A ;
Rauen, U ;
de Groot, H .
JOURNAL OF HEPATOLOGY, 2000, 32 (01) :58-66