Gating the conductivity of arrays of metallic quantum dots

被引:41
作者
Remacle, F
Beverly, KC
Heath, JR
Levine, RD [1 ]
机构
[1] Hebrew Univ Jerusalem, Fritz Haber Res Ctr Mol Dynam, IL-91904 Jerusalem, Israel
[2] Univ Liege, Dept Chim, B-4000 Cointe Ougree, Belgium
[3] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[4] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
关键词
D O I
10.1021/jp036357h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Experimental and computational studies demonstrating that the conduction of compressed, two-dimensional arrays of hexagonally ordered Ag quantum dots (QDs) may be varied through the influence of applied electric fields are reported and discussed. Monolayers of Ag QDs are incorporated into three-terminal (gated) devices, in which temperature, source-drain voltage (V-sd), gating voltage (V-g), compression of the array, and QD size distribution may all be varied. Experimental and computational results are compared in an effort to construct a physical picture of the system. Current vs V-sd plots at low temperatures exhibit systematic nonlinearities that change over to an ohmic-like behavior at higher temperatures and/or higher V-sd. The voltage-induced transition is discussed as a transition of the conducting states from domain localized to delocalized. Such a transition was previously observed in the temperature dependence of the resistance. The computational model reveals that this transition is also highly sensitive to both the compression of the array and the size-distribution of the dots. We calculate the influence of V-g on the conductivity of the QD array, using the same computational model. In both the experiment and the model, we find a significant voltage gating effect and we observe hole-type conductivity of the array. Overall, the results demonstrate that low-temperature transport measurements provide a spectroscopic-like probe of the electronic states of the QD lattice. The theoretical approach further suggests that quite different gating behavior can be observed for electrodes with a different Fermi energy than the gold electrodes used in the experiment.
引用
收藏
页码:13892 / 13901
页数:10
相关论文
共 45 条
  • [1] ''Coulomb staircase'' at room temperature in a self-assembled molecular nanostructure
    Andres, RP
    Bein, T
    Dorogi, M
    Feng, S
    Henderson, JI
    Kubiak, CP
    Mahoney, W
    Osifchin, RG
    Reifenberger, R
    [J]. SCIENCE, 1996, 272 (5266) : 1323 - 1325
  • [2] SINGLE-ELECTRON CAPACITANCE SPECTROSCOPY OF DISCRETE QUANTUM LEVELS
    ASHOORI, RC
    STORMER, HL
    WEINER, JS
    PFEIFFER, LN
    PEARTON, SJ
    BALDWIN, KW
    WEST, KW
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (20) : 3088 - 3091
  • [3] THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT
    BEENAKKER, CWJ
    [J]. PHYSICAL REVIEW B, 1991, 44 (04) : 1646 - 1656
  • [4] Effects of size dispersion disorder on the charge transport in self-assembled 2-D Ag nanoparticle arrays
    Beverly, KC
    Sampaio, JF
    Heath, JR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (09) : 2131 - 2135
  • [5] Quantum dot artificial solids: Understanding the static and dynamic role of size and packing disorder
    Beverly, KC
    Sample, JL
    Sampaio, JF
    Remacle, F
    Heath, JR
    Levine, RD
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 : 6456 - 6459
  • [6] Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices
    Black, CT
    Murray, CB
    Sandstrom, RL
    Sun, SH
    [J]. SCIENCE, 2000, 290 (5494) : 1131 - 1134
  • [7] A [2]catenane-based solid state electronically reconfigurable switch
    Collier, CP
    Mattersteig, G
    Wong, EW
    Luo, Y
    Beverly, K
    Sampaio, J
    Raymo, FM
    Stoddart, JF
    Heath, JR
    [J]. SCIENCE, 2000, 289 (5482) : 1172 - 1175
  • [8] Nanocrystal superlattices
    Collier, CP
    Vossmeyer, T
    Heath, JR
    [J]. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 371 - 404
  • [9] Reversible tuning of silver quantum dot monolayers through the metal-insulator transition
    Collier, CP
    Saykally, RJ
    Shiang, JJ
    Henrichs, SE
    Heath, JR
    [J]. SCIENCE, 1997, 277 (5334) : 1978 - 1981
  • [10] Datta S., 1995, Electronic Transport in Mesoscopic Systems