Skeletal muscle protein anabolic response to resistance exercise and essential amino acids is delayed with aging

被引:271
作者
Drummond, Micah J. [1 ]
Dreyer, Hans C. [1 ]
Pennings, Bart [3 ]
Fry, Christopher S. [1 ]
Dhanani, Shaheen [2 ,3 ]
Dillon, Edgar L. [2 ,3 ]
Sheffield-Moore, Melinda [2 ,3 ]
Volpi, Elena [2 ,3 ]
Rasmussen, Blake B. [1 ,3 ]
机构
[1] Univ Texas Med Branch, Dept Phys Therapy, Div Rehabil Sci, Galveston, TX 77555 USA
[2] Univ Texas Med Branch, Dept Internal Med, Galveston, TX 77555 USA
[3] Univ Texas Med Branch, Dept Sealy Ctr Aging, Galveston, TX 77555 USA
关键词
sarcopenia; mammalian target of rapamycin; AMPK; weight lifting;
D O I
10.1152/japplphysiol.00021.2008
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Skeletal muscle loss during aging leads to an increased risk of falls, fractures, and eventually loss of independence. Resistance exercise is a useful intervention to prevent sarcopenia; however, the muscle protein synthesis (MPS) response to resistance exercise is less in elderly compared with young subjects. On the other hand, essential amino acids (EAA) increase MPS equally in both young and old subjects when sufficient EAA is ingested. We hypothesized that EAA ingestion following a bout of resistance exercise would stimulate anabolic signaling and MPS similarly between young and old men. Each subject ingested 20 g of EAA 1 h following leg resistance exercise. Muscle biopsies were obtained before and 1, 3, and 6 h after exercise to measure the rate of MPS and signaling pathways that regulate translation initiation. MPS increased early in young (1-3 h postexercise) and later in old (3-6 h postexercise). At 1 h postexercise, ERK1/2 MNK1 phosphorylation increased and eIF2 alpha phosphorylation decreased only in the young. mTOR signaling (mTOR, S6K1, 4E-BP1, eEF2) was similar between groups at all time points, but MNK1 phosphorylation was lower at 3 h and AMP-activated protein kinase-alpha (AMPK alpha) phosphorylation was higher in old 1-3 h postexercise. We conclude that the acute MPS response after resistance exercise and EAA ingestion is similar between young and old men; however, the response is delayed with aging. Unresponsive ERK1/2 signaling and AMPK activation in old muscle may be playing a role in the delayed activation of MPS. Notwithstanding, the combination of resistance exercise and EAA ingestion should be a useful strategy to combat sarcopenia.
引用
收藏
页码:1452 / 1461
页数:10
相关论文
共 64 条
[1]  
ANIANSSON A, 1980, SCAND J REHABIL MED, V12, P161
[2]   Epidemiology of sarcopenia among the elderly in New Mexico [J].
Baumgartner, RN ;
Koehler, KM ;
Gallagher, D ;
Romero, L ;
Heymsfield, SB ;
Ross, RR ;
Garry, PJ ;
Lindeman, RD .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1998, 147 (08) :755-763
[3]   An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein [J].
Biolo, G ;
Tipton, KD ;
Klein, S ;
Wolfe, RR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1997, 273 (01) :E122-E129
[4]   Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle [J].
Birk, J. B. ;
Wojtaszewski, J. F. P. .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 577 (03) :1021-1032
[5]   Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise [J].
Blomstrand, E ;
Eliasson, J ;
Karlsson, HKR ;
Köhnke, R .
JOURNAL OF NUTRITION, 2006, 136 (01) :269S-273S
[6]   Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo [J].
Bodine, SC ;
Stitt, TN ;
Gonzalez, M ;
Kline, WO ;
Stover, GL ;
Bauerlein, R ;
Zlotchenko, E ;
Scrimgeour, A ;
Lawrence, JC ;
Glass, DJ ;
Yancopoulos, GD .
NATURE CELL BIOLOGY, 2001, 3 (11) :1014-1019
[7]   AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. [J].
Bolster, DR ;
Crozier, SJ ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) :23977-23980
[8]   Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle [J].
Bolster, DR ;
Kubica, N ;
Crozier, SJ ;
Williamson, DL ;
Farrell, PA ;
Kimball, SR ;
Jefferson, LS .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 553 (01) :213-220
[9]   Essential amino acids and muscle protein recovery from resistance exercise [J].
Borsheim, E ;
Tipton, KD ;
Wolf, SE ;
Wolfe, RR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 283 (04) :E648-E657
[10]   THE DETERMINATION OF LOW D(5)-PHENYLALANINE ENRICHMENT (0.002-0.09 ATOM PERCENT EXCESS), AFTER CONVERSION TO PHENYLETHYLAMINE, IN RELATION TO PROTEIN-TURNOVER STUDIES BY GAS-CHROMATOGRAPHY ELECTRON IONIZATION MASS-SPECTROMETRY [J].
CALDER, AG ;
ANDERSON, SE ;
GRANT, I ;
MCNURLAN, MA ;
GARLICK, PJ .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1992, 6 (07) :421-424