Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling -: art. no. 158101

被引:172
作者
Galán, RF
Ermentrout, GB
Urban, NN
机构
[1] Carnegie Mellon Univ, Dept Biol Sci, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Ctr Neural Basis Cognit, Pittsburgh, PA 15213 USA
[3] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1103/PhysRevLett.94.158101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phase-resetting curve (PRC) of a neural oscillator describes the effect of a perturbation on its periodic motion and is therefore useful to study how the neuron responds to stimuli and whether it phase locks to other neurons in a network. Combining theory, computer simulations and electrophysiological experiments we present a simple method for estimating the PRC of real neurons. This allows us to simplify the complex dynamics of a single neuron to a phase model. We also illustrate how to infer the existence of coherent network activity from the estimated PRC.
引用
收藏
页数:4
相关论文
共 22 条