Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes

被引:161
作者
Joseph, SM [1 ]
Buchakjian, MR [1 ]
Dubyak, GR [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA
关键词
D O I
10.1074/jbc.M302680200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extracellular ATP and other nucleotides function as autocrine and paracrine signaling factors in many tissues. Recent studies suggest that P2 nucleotide receptors and ecto-nucleotidases compete for a limited pool of endogenously released nucleotides within cell surface microenvironments that are functionally segregated from the bulk extracellular compartment. To test this hypothesis, we have used luciferase-based methods to continuously record extracellular ATP levels in monolayers of human 1321N1 astrocytoma cells under resting conditions, during stimulation of Ca2+-mobilizing receptors for thrombin or acetylcholine, and during mechanical stimulation by hypotonic stress. Soluble luciferase was utilized as an indicator of ATP levels within the bulk extracellular compartment, whereas a chimeric protein A-luciferase, adsorbed to antibodies against a glycosylphosphatidylinositol-anchored plasma membrane protein, was used as a spatially localized probe of ATP levels at the immediate extracellular surface. Significant accumulation of ATP in the bulk extracellular compartment, under either resting (1-2 nM ATP) or stimulated (10-80 nM ATP) conditions, was observed only when endogenous ecto-ATPase activity was pharmacologically inhibited by the poorly metabolizable analog, betagamma-methylene ATP. In contrast, accumulation of submicromolar ATP in the cell surface microenvironment was readily measured even in the absence of ecto-ATPase inhibition suggesting that the spatially colocalized luciferase could effectively compete with endogenous ecto-ATPases for released ATP. Other experiments revealed a critical role for elevated cytosolic [Ca2+] in the ATP release mechanism triggered by thrombin or muscarinic receptors but not in basal ATP release or release stimulated by hypotonic stress. These observations suggest that ATP release sites are colocalized with ecto-ATPases at the astrocyte cell surface. This colocalization may act to spatially restrict the actions of released ATP as a paracrine or autocrine mediator of cell-to-cell signaling.
引用
收藏
页码:23331 / 23342
页数:12
相关论文
共 69 条
[1]   Characterization of the UDP-glucose receptor (re-named here the P2Y14 receptor) adds diversity to the P2Y receptor family [J].
Abbracchio, MP ;
Boeynaems, JM ;
Barnard, EA ;
Boyer, JL ;
Kennedy, C ;
Miras-Portugal, MT ;
King, BF ;
Gachet, C ;
Jacobson, KA ;
Weisman, GA ;
Burnstock, G .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2003, 24 (02) :52-55
[2]   Release of ATP induced by hypertonic solutions in Xenopus oocytes [J].
Aleu, J ;
Martín-Satué, M ;
Navarro, P ;
de Lara, IP ;
Bahima, L ;
Marsal, J ;
Solsona, C .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 547 (01) :209-219
[3]   Intercellular calcium signaling mediated by point-source burst release of ATP [J].
Arcuino, G ;
Lin, JHC ;
Takano, T ;
Liu, C ;
Jiang, L ;
Gao, Q ;
Kang, J ;
Nedergaard, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9840-9845
[4]   Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase [J].
Beigi, R ;
Kobatake, E ;
Aizawa, M ;
Dubyak, GR .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1999, 276 (01) :C267-C278
[5]   Endotoxin activation of macrophages does not induce ATP release and autocrine stimulation of P2 nucleotide receptors [J].
Beigi, RD ;
Dubyak, GR .
JOURNAL OF IMMUNOLOGY, 2000, 165 (12) :7189-7198
[6]   Pharmacological characterization of recombinant human and rat P2X receptor subtypes [J].
Bianchi, BR ;
Lynch, KJ ;
Touma, E ;
Niforatos, W ;
Burgard, EC ;
Alexander, KM ;
Park, HS ;
Yu, HX ;
Metzger, R ;
Kowaluk, E ;
Jarvis, MF ;
van Biesen, T .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1999, 376 (1-2) :127-138
[7]   Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular [J].
Bodin, P ;
Burnstock, G .
JOURNAL OF CARDIOVASCULAR PHARMACOLOGY, 2001, 38 (06) :900-908
[8]   Nucleotide pyrophosphatases/phosphodiesterases on the move [J].
Bollen, M ;
Gijsbers, R ;
Ceulemans, H ;
Stalmans, W ;
Stefan, C .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2000, 35 (06) :393-432
[9]   Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26 [J].
Braet, K ;
Vandamme, W ;
Martin, PEM ;
Evans, WH ;
Leybaert, L .
CELL CALCIUM, 2003, 33 (01) :37-48
[10]   Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation [J].
Braunstein, GM ;
Roman, RM ;
Clancy, JP ;
Kudlow, BA ;
Taylor, AL ;
Shylonsky, VG ;
Jovov, B ;
Peter, K ;
Jilling, T ;
Ismailov, II ;
Benos, DJ ;
Schwiebert, LM ;
Fitz, JG ;
Schwiebert, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (09) :6621-6630