Microengineered hydrogels for tissue engineering

被引:657
作者
Khademhosseini, Ali
Langer, Robert [1 ]
机构
[1] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Brigham & Womens Hosp, Ctr Biomed Engn, Dept Med, Cambridge, MA 02139 USA
[3] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
关键词
microengineered hydrogels; tissue engineering;
D O I
10.1016/j.biomaterials.2007.07.021
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydrogels have been extensively used in various biomedical applications such as drug delivery and biosensing. More recently the ability to engineer the size and shape of biologically relevant hydrogels has generated new opportunities in addressing challenges in tissue engineering such as vascularization, tissue architecture and cell seeding. Here, we discuss the use of microengineered hydrogels for tissue engineering applications. We will initially provide an overview of the various approaches that can be used to synthesize hydrogels with controlled features and will subsequently discuss the emerging applications of these hydrogels. (c) 2007 Published by Elsevier Ltd.
引用
收藏
页码:5087 / 5092
页数:6
相关论文
共 33 条
[1]   Probing the role of multicellular organization in three-dimensional microenvironments [J].
Albrecht, DR ;
Underhill, GH ;
Wassermann, TB ;
Sah, RL ;
Bhatia, SN .
NATURE METHODS, 2006, 3 (05) :369-375
[2]   Microfabrication technology for vascularized tissue engineering [J].
Borenstein, JT ;
Terai, H ;
King, KR ;
Weinberg, EJ ;
Kaazempur-Mofrad, MR ;
Vacanti, JP .
BIOMEDICAL MICRODEVICES, 2002, 4 (03) :167-175
[3]   Fabrication of gradient hydrogels using a microfluidics/photopolymerization process [J].
Burdick, JA ;
Khademhosseini, A ;
Langer, R .
LANGMUIR, 2004, 20 (13) :5153-5156
[4]   A microfluidic biomaterial [J].
Cabodi, M ;
Choi, NW ;
Gleghorn, JP ;
Lee, CSD ;
Bonassar, LJ ;
Stroock, AD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13788-13789
[5]   Osteoblastic cells regulate the haematopoietic stem cell niche [J].
Calvi, LM ;
Adams, GB ;
Weibrecht, KW ;
Weber, JM ;
Olson, DP ;
Knight, MC ;
Martin, RP ;
Schipani, E ;
Divieti, P ;
Bringhurst, FR ;
Milner, LA ;
Kronenberg, HM ;
Scadden, DT .
NATURE, 2003, 425 (6960) :841-846
[6]   Formation of perfused, functional microvascular tubes in vitro [J].
Chrobak, Kenneth M. ;
Potter, Daniel R. ;
Tien, Joe .
MICROVASCULAR RESEARCH, 2006, 71 (03) :185-196
[7]   Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems [J].
Dang, SM ;
Kyba, M ;
Perlingeiro, R ;
Daley, GQ ;
Zandstra, PW .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 78 (04) :442-453
[8]   Controlled synthesis of nonspherical microparticles using microfluidics [J].
Dendukuri, D ;
Tsoi, K ;
Hatton, TA ;
Doyle, PS .
LANGMUIR, 2005, 21 (06) :2113-2116
[9]   Continuous-flow lithography for high-throughput microparticle synthesis [J].
Dendukuri, D ;
Pregibon, DC ;
Collins, J ;
Hatton, TA ;
Doyle, PS .
NATURE MATERIALS, 2006, 5 (05) :365-369
[10]   Endothelialized microvasculature based on a biodegradable elastomer [J].
Fidkowski, C ;
Kaazempur-Mofrad, MR ;
Borenstein, J ;
Vacanti, JP ;
Langer, R ;
Wang, YD .
TISSUE ENGINEERING, 2005, 11 (1-2) :302-309