Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques

被引:174
作者
Fragiadakis, Daniel [1 ]
Pissis, Polycarpos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Phys, GR-15780 Athens, Greece
关键词
dielectric properties; relaxation; electric modulus; glass transition; nanocomposites; silica; polymers and organics; calorimetry;
D O I
10.1016/j.jnoncrysol.2007.05.183
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report new results on segmental dynamics and glass transition in a series of poly(dimethylsiloxane) networks filled with silica nanoparticles prepared by sol-gel techniques, obtained by differential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC), broadband dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). The nanocomposites are characterized by a fine dispersion of 10 nm silica particles and hydrogen bonding polymer/filler interactions. The first three techniques indicate, in agreement with each other, that a fraction of polymer in an interfacial layer around the silica particles with a thickness of 2-3 nm shows modified dynamics. The DSC data, in particular measurements of heat capacity jump at T-g, are analyzed in terms of immobilized polymer in the interfacial layer. The dielectric TSDC and DRS data are analyzed in terms of slower dynamics in the interfacial layer as compared to bulk dynamics. We employ a special version of TSDC, the so-called thermal sampling (TS) technique, and provide experimental evidence for a continuous distribution of glass transition temperatures (T-g) and molecular mobility of the polymer in the interfacial layer, which is consistent with the DRS data. Finally, DMA results show a moderate slowing down of segmental dynamics of the whole polymer matrix (increase of glass transition temperature by about 10 K as compared to the pure matrix). (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:4344 / 4352
页数:9
相关论文
共 32 条
[1]   Effects of confinement on material behaviour at the nanometre size scale [J].
Alcoutlabi, M ;
McKenna, GB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (15) :R461-R524
[2]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[3]   Local dynamics of poly(dimethyl siloxane) in the presence of reinforcing filler particles [J].
Arrighi, V ;
Higgins, JS ;
Burgess, AH ;
Floudas, G .
POLYMER, 1998, 39 (25) :6369-6376
[4]   The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller [J].
Arrighi, V ;
McEwen, IJ ;
Qian, H ;
Prieto, MBS .
POLYMER, 2003, 44 (20) :6259-6266
[5]   Predicting the morphology of nanostructured composites [J].
Balazs, AC .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2003, 7 (01) :27-33
[6]   Epoxy layered silicate nanocomposites [J].
Becker, O ;
Simon, GP .
INORGANIC POLYMERIC NANOCOMPOSITES AND MEMBRANES, 2005, 179 :29-82
[7]   Heat capacity spectroscopy compared to other linear response methods at the dynamic glass transition in poly(vinyl acetate) [J].
Beiner, M ;
Korus, J ;
Lockwenz, H ;
Schroter, K ;
Donth, E .
MACROMOLECULES, 1996, 29 (15) :5183-5189
[8]   Evidence for the shift of the glass transition near the particles in silica-filled elastomers [J].
Berriot, J ;
Montes, H ;
Lequeux, F ;
Long, D ;
Sotta, P .
MACROMOLECULES, 2002, 35 (26) :9756-9762
[9]   Molecular dynamics in nanostructured polyimide-silica hybrid materials and their thermal stability [J].
Bershtein, VA ;
Egorova, LM ;
Yakushev, PN ;
Pissis, P ;
Sysel, P ;
Brozova, L .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2002, 40 (10) :1056-1069
[10]   The effect of interphase on the elastic behavior of a glass/epoxy bundle [J].
Chouchaoui, CS ;
Benzeggagh, ML .
COMPOSITES SCIENCE AND TECHNOLOGY, 1997, 57 (06) :617-622