Influence of surface chemistry on the electronic properties of graphene nanoflakes

被引:22
作者
Chutia, Arunabhiram [1 ,2 ]
Cimpoesu, Fanica [3 ]
Tsuboi, Hideyuki [4 ]
Miyamoto, Akira [5 ]
机构
[1] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Adv Inst Mat Res, WPI Res Ctr, Sendai, Miyagi 9808577, Japan
[3] Inst Phys Chem, Bucharest 060021, Romania
[4] Tohoku Univ, Grad Sch Engn, Dept Appl Chem, Sendai, Miyagi 9808579, Japan
[5] Tohoku Univ, New Ind Creat Hatchery Ctr, Sendai, Miyagi 9808579, Japan
关键词
MOLECULAR-ORBITAL CALCULATIONS; ELECTRICAL-CONDUCTIVITY; ACTIVATED CARBON; ADSORPTION; REACTIVITY; BLACKS; SULFUR; MODEL;
D O I
10.1016/j.cplett.2010.12.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spin polarized density functional theory was employed to investigate the influence of organic functional groups on the electronic properties of graphene nanoflakes (GNF). We found that for -OH functionalized GNF, energy gap decreases as the number of layers is increased regardless of the stacking pattern (ABA and AAA). In the case of -SH functionalized GNF the energy gap depends on the number of layers and on the stacking pattern. The observed trends were clarified in terms of interactions between pi-electron rich beds. Our results bring new insights into engineering the properties of GNFs by modification of their surface chemistry and stacking conformation. (C) 2010 Elsevier B. V. All rights reserved.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 32 条
[1]  
Bultinck P, 2006, CROAT CHEM ACTA, V79, P363
[2]   TIGHT-BINDING MODEL FOR THE ELECTRONIC-PROPERTIES OF SIMPLE HEXAGONAL GRAPHITE [J].
CHARLIER, JC ;
MICHENAUD, JP ;
GONZE, X ;
VIGNERON, JP .
PHYSICAL REVIEW B, 1991, 44 (24) :13237-13249
[3]  
Collignon B., 2005, Computing Letters, V1, P277
[4]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[5]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[6]   STRUCTURE AND REACTIVITY OF CARBONS - FROM CARBON-BLACK TO CARBON COMPOSITES [J].
DONNET, JB .
CARBON, 1982, 20 (04) :267-282
[7]   CHEMICAL REACTIVITY OF CARBONS [J].
DONNET, JB .
CARBON, 1968, 6 (02) :161-&
[8]  
DRUSHEL HV, 1959, J PHYS CHEM-US, V62, P1502
[9]   Predicting solute adsorption on activated carbon: Phenol [J].
Efremenko, I ;
Sheintuch, M .
LANGMUIR, 2006, 22 (08) :3614-3621
[10]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950