Effect of microscopic noise on front propagation

被引:104
作者
Brunet, É [1 ]
Derrida, B [1 ]
机构
[1] Ecole Natl Super Chim Paris, F-75231 Paris 05, France
关键词
diffusion-reaction equation; wave-front; microscopic stochastic systems;
D O I
10.1023/A:1004875804376
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effect of the noise due to microscopic fluctuations on the position of a one dimensional front propagating from a stable to an unstable region in the "linearly marginal stability case." By simulating a very simple system for which the effective number N of particles can be as large as N=10(150), we measure the N dependence of the diffusion constant D, of the front and the shift of its velocity N-upsilon. Our results indicate that D-N similar to (log N)(-3). They also confirm our recent claim that the shift of velocity scales like upsilon (min) - upsilon (N) similar or equal to K(log N)(-2) and indicate that the numerical value of K is very close to the analytical expression K-approx obtained in our previous work using a simple cut-off approximation.
引用
收藏
页码:269 / 282
页数:14
相关论文
共 37 条
[1]   Ballistic and diffusive corrections to front propagation in the presence of multiplicative noise [J].
Armero, J ;
Casademunt, J ;
Ramirez-Piscina, L ;
Sancho, JM .
PHYSICAL REVIEW E, 1998, 58 (05) :5494-5500
[2]   External fluctuations in front propagation [J].
Armero, J ;
Sancho, JM ;
Casademunt, J ;
Lacasta, AM ;
RamirezPiscina, L ;
Sagues, F .
PHYSICAL REVIEW LETTERS, 1996, 76 (17) :3045-3048
[3]  
Aronson D. G., 1975, LECT NOTES MATH, V446, P5
[4]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[5]   Fisher waves in the diffusion-limited coalescence process A+A⇆A [J].
ben-Avraham, D .
PHYSICS LETTERS A, 1998, 247 (1-2) :53-58
[6]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[7]   MICROSCOPIC SELECTION PRINCIPLE FOR A DIFFUSION-REACTION EQUATION [J].
BRAMSON, M ;
CALDERONI, P ;
DEMASI, A ;
FERRARI, P ;
LEBOWITZ, J ;
SCHONMANN, RH .
JOURNAL OF STATISTICAL PHYSICS, 1986, 45 (5-6) :905-920
[8]  
BRAMSON MD, 1983, MEM AM MATH SOC, P44
[9]   FLUCTUATION EFFECTS ON WAVE-PROPAGATION IN A REACTION-DIFFUSION PROCESS [J].
BREUER, HP ;
HUBER, W ;
PETRUCCIONE, F .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 73 (03) :259-273
[10]   THE MACROSCOPIC LIMIT IN A STOCHASTIC REACTION-DIFFUSION PROCESS [J].
BREUER, HP ;
HUBER, W ;
PETRUCCIONE, F .
EUROPHYSICS LETTERS, 1995, 30 (02) :69-74