On-off collective imperfect phase synchronization and bursts in wave energy in a turbulent state

被引:38
作者
He, KF
Chian, ACL
机构
[1] CCAST, World Lab, Beijing 100080, Peoples R China
[2] Beijing Normal Univ, Inst Low Energy Nucl Phys, Beijing 100875, Peoples R China
[3] Univ Adelaide, NITP, WISER, Adelaide, SA 5005, Australia
[4] INPE, BR-12227010 Sao Jose Dos Campos, SP, Brazil
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevLett.91.034102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new type of synchronization, on-off collective imperfect phase synchronization, is found in a turbulent state. In the driver frame the nonlinear wave system can be transformed to a set of coupled oscillators moving in a potential related to the unstable steady wave. In "on" stages the oscillators in different spatial scales adjust themselves to collective imperfect phase synchronization, inducing strong bursts in the wave energy. The interspike intervals display a power-law distribution. In addition to the embedded saddle point, it is emphasized that the delocalization of the master mode also plays an important role in developing the on-off synchronization.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
[Anonymous], 1990, DISSIPATIVE STRUCTUR, DOI DOI 10.1016/B978-0-08-092445-8.50011-0
[2]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[3]   Power laws in solar flares: Self-organized criticality or turbulence? [J].
Boffetta, G ;
Carbone, V ;
Giuliani, P ;
Veltri, P ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (22) :4662-4665
[4]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[5]  
CHIAN ACL, 1999, PROG THEOR PHYS SUPP, V139, P34
[6]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[7]  
DODD RK, 1982, SOLITONS NONLINEAR W, P596
[8]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]   SELF-ORGANIZATION PROCESSES IN CONTINUOUS MEDIA [J].
HASEGAWA, A .
ADVANCES IN PHYSICS, 1985, 34 (01) :1-42