Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density

被引:284
作者
Chandesris, M. [1 ,2 ]
Medeau, V. [1 ,2 ]
Guillet, N. [1 ,2 ]
Chelghoum, S. [1 ,2 ]
Thoby, D. [1 ,2 ]
Fouda-Onana, F. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA, LITEN, DEHT, F-38054 Grenoble 9, France
基金
欧盟第七框架计划;
关键词
PEM water electrolyzer; Numerical modeling; Membrane degradation; Experimental validation; Atmospheric operation; OXYGEN REDUCTION; FUEL-CELL; CORROSION BEHAVIOR; CURRENT COLLECTORS; PERFORMANCE; IMPACT; ELECTROCATALYSIS; DEPENDENCE; PLATINUM; HYDROGEN;
D O I
10.1016/j.ijhydene.2014.11.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a 1D polymer electrolyte membrane water electrolyzer (PEMWE) model that incorporates chemical degradation of the membrane is developed to study the influence of temperature and current density on the membrane degradation. In the 1D performance model, electronic and ionic transports through the different cell components are considered together with the electrochemical behavior of the anodic and cathodic catalyst layers. The membrane degradation model describes the oxygen cross-over from the anode to the cathode side, the formation of hydrogen peroxyde at the cathode side together with the subsequent formation of radicals via Fenton reactions involving metal-ion impurities and the membrane degradation. The development of the model is supported by specific single cell experiments to both validate the different modeling assumptions and determine some of the physical parameters involved in the performance and degradation models. The single-cell degradation tests confirm that most of the membrane degradation occurs at the cathode side and also show the strong influence of the temperature on the degradation rate. The effect of the current density on the degradation rate is more complex and presents a maximum at quite low current density. This phenomena, observed in the experiments, is well captured by the model. The model is then used to study the time evolution of the membrane thickness. The coupling between the performance and the chemical degradation models allows to capture the acceleration of membrane thinning. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1353 / 1366
页数:14
相关论文
共 40 条
[1]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[2]   Catalytic effect of platinum on oxygen reduction -: An ab initio model including electrode potential dependence [J].
Anderson, AB ;
Albu, TV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (11) :4229-4238
[3]   Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production [J].
Awasthi, A. ;
Scott, Keith ;
Basu, S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (22) :14779-14786
[4]   PEM electrolysis for production of hydrogen from renewable energy sources [J].
Barbir, F .
SOLAR ENERGY, 2005, 78 (05) :661-669
[5]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[6]   A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer [J].
Biaku, C. Y. ;
Dale, N. V. ;
Mann, M. D. ;
Salehfar, H. ;
Peters, A. I. ;
Han, T. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (16) :4247-4254
[7]   A simple model for solid polymer electrolyte (SPE) water electrolysis [J].
Choi, PH ;
Bessarabov, DG ;
Datta, R .
SOLID STATE IONICS, 2004, 175 (1-4) :535-539
[8]   Degradation of polymer electrolyte membranes [J].
Collier, Amanda ;
Wang, Haijiang ;
Yuan, Xiao Zi ;
Zhang, Jiujun ;
Wilkinson, David P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (13) :1838-1854
[9]   Modeling Chemical Degradation of a Polymer Electrolyte Membrane and its Impact on Fuel Cell Performance [J].
Coulon, Romain ;
Bessler, Wolfgang G. ;
Franco, Alejandro A. .
BATTERY/ENERGY TECHNOLOGY (GENERAL) - 216TH ECS MEETING, 2010, 25 (35) :259-273
[10]   Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics [J].
Dale, N. V. ;
Mann, M. D. ;
Salehfar, H. .
JOURNAL OF POWER SOURCES, 2008, 185 (02) :1348-1353