A general class of hierarchical ordinal regression models with applications to correlated ROC analysis

被引:60
作者
Ishwaran, H [1 ]
Gatsonis, CA [1 ]
机构
[1] Cleveland Clin Fdn, Dept Biostat & Epidemiol, Cleveland, OH 44195 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2000年 / 28卷 / 04期
关键词
Bayesian hierarchical model; Gibbs sampling; HROC model; ordinal regression; ordinal categorical data; ROC curve;
D O I
10.2307/3315913
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors discuss a general class of hierarchical ordinal regression models that includes both location and scale parameters, allows link functions to be selected adaptively as finite mixtures of normal cumulative distribution functions, and incorporates flexible correlation structures for the latent scale variables. Exploiting the well-known correspondence between ordinal regression models and parametric ROC (Receiver Operating Characteristic) curves makes it possible to use a hierarchical ROC (HROC) analysis to study multilevel clustered data in diagnostic imaging studies. The authors present a Bayesian approach to model fitting using Markov chain Monte Carlo methods and discuss HROC applications to the analysis of data from two diagnostic radiology studies involving multiple interpreters.
引用
收藏
页码:731 / 750
页数:20
相关论文
共 31 条