Hilbert transform pairs of wavelet bases

被引:253
作者
Selesnick, IW [1 ]
机构
[1] Polytech Univ, Dept Elect Engn, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/97.923042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper considers the design of pairs of wavelet bases where the wavelets form a Hilbert transform pair. The derivation is based on the limit functions defined by the infinite product formula. It is found that the scaling filters should be offset from one another by a half sample. This gives an alternative derivation and explanation for the result by Kingsbury, that the dual-tree DWT is (nearly) shift-invariant when the scaling filters satisfy the same offset.
引用
收藏
页码:170 / 173
页数:4
相关论文
共 9 条
[1]  
Abry P., 1994, Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No.94TH8007), P225, DOI 10.1109/TFSA.1994.467252
[2]  
Abry P., 1997, ONDELETTES TURBULENC
[3]   Implementation of operators via filter banks - Hardy wavelets and autocorrelation shell [J].
Beylkin, G ;
Torresani, B .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :164-185
[4]  
COX D, 1991, IDEALS VARIETIES ALG
[5]   THE DESIGN AND USE OF STEERABLE FILTERS [J].
FREEMAN, WT ;
ADELSON, EH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (09) :891-906
[6]  
GREUEL GM, 1997, SINGULAR REFERENCE M
[7]  
Kingsbury N. G., 1999, PHIL T R SOC LONDO A
[8]  
KINGSBURY NG, 2000, P IEEE INT C IM PROC
[9]  
Ozturk E, 2000, INT CONF ACOUST SPEE, P2641, DOI 10.1109/ICASSP.2000.861015