Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein

被引:99
作者
Watanabe, K
Handa, H
Mizumoto, K
Nagata, K
机构
[1] TOKYO INST TECHNOL,FAC BIOSCI & BIOTECHNOL,DEPT BIOMOLEC ENGN,MIDORI KU,YOKOHAMA,KANAGAWA 226,JAPAN
[2] KITASATO UNIV,TOKYO,JAPAN
关键词
D O I
10.1128/JVI.70.1.241-247.1996
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Influenza virus M1 protein has been shown to inhibit the transcription catalyzed by viral ribonucleoprotein complexes isolated from virions. Here, this inhibition mechanism was studied with the recombinant MI protein purified from Escherichia coli expressing it from cDNA. RNA mobility shift assays indicated that both soluble and aggregate forms of the recombinant M1, which were separated by the glycerol density gradient, were bound to RNA. Once an M1-RNA complex was formed, free M1 was bound to the M1-RNA complex cooperatively rather than to free RNA. In addition, the recombinant M1 was capable of binding to preformed RNA-nucleocapsid protein complexes. The mechanism for inhibition of the viral RNA polymerase activity was analyzed by the in vitro RNA synthesis systems that depend on an exogenously added RNA template. These systems were more sensitive for evaluating the inhibition by M1 than the RNA synthesis system depending on an endogenous RNA template. The RNA synthesis inhibition was examined at four steps: cleavage of capped RNA; incorporation of the first nucleotide, GMP; limited elongation; and synthesis of full-size product. M1 inhibited RNA synthesis mainly at the early steps. The experiments with M1 mutant proteins containing amino acid deletions suggested that the M1 region between amino acid residues 91 and 111 was essential for anti-RNA synthesis activity, RNA binding, and oligomerization of Rill on RNA.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 36 条
[21]   A NEW METHOD FOR RECONSTITUTING INFLUENZA POLYMERASE AND RNA INVITRO - A STUDY OF THE PROMOTER ELEMENTS FOR CRNA AND VRNA SYNTHESIS INVITRO AND VIRAL RESCUE INVIVO [J].
SEONG, BL ;
BROWNLEE, GG .
VIROLOGY, 1992, 186 (01) :247-260
[22]   REGULATION OF INFLUENZA-VIRUS RNA-POLYMERASE ACTIVITY BY CELLULAR AND VIRAL FACTORS [J].
SHIMIZU, K ;
HANDA, H ;
NAKADA, S ;
NAGATA, K .
NUCLEIC ACIDS RESEARCH, 1994, 22 (23) :5047-5053
[23]  
STEGMANN T, 1989, ANNU REV BIOPHYS BIO, V18, P187, DOI 10.1146/annurev.bb.18.060189.001155
[24]   CRYSTAL-STRUCTURE OF THE ADENOVIRUS DNA-BINDING PROTEIN REVEALS A HOOK-ON MODEL FOR COOPERATIVE DNA-BINDING [J].
TUCKER, PA ;
TSERNOGLOU, D ;
TUCKER, AD ;
COENJAERTS, FEJ ;
LEENDERS, H ;
VANDERVLIET, PC .
EMBO JOURNAL, 1994, 13 (13) :2994-3002
[25]   RNA-BINDING PROPERTIES OF INFLUENZA-A VIRUS MATRIX PROTEIN M1 [J].
WAKEFIELD, L ;
BROWNLEE, GG .
NUCLEIC ACIDS RESEARCH, 1989, 17 (21) :8569-8580
[26]   INTERACTION BETWEEN INFLUENZA-VIRUS PROTEINS AND PINE-CONE ANTITUMOR SUBSTANCE THAT INHIBITS THE VIRUS MULTIPLICATION [J].
WATANABE, K ;
MOMOSE, F ;
HANDA, H ;
NAGATA, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 214 (02) :318-323
[27]   VIRAL AND CELLULAR MEMBRANE-FUSION PROTEINS [J].
WHITE, JM .
ANNUAL REVIEW OF PHYSIOLOGY, 1990, 52 :675-697
[28]   HYPERPHOSPHORYLATION OF MUTANT INFLUENZA-VIRUS MATRIX PROTEIN, M1, CAUSES ITS RETENTION IN THE NUCLEUS [J].
WHITTAKER, G ;
KEMLER, I ;
HELENIUS, A .
JOURNAL OF VIROLOGY, 1995, 69 (01) :439-445
[29]   CLONING OF INFLUENZA CDNA INTO M13 - THE SEQUENCE OF THE RNA SEGMENT ENCODING THE A-PR-8-34 MATRIX PROTEIN [J].
WINTER, G ;
FIELDS, S .
NUCLEIC ACIDS RESEARCH, 1980, 8 (09) :1965-1974
[30]  
YAMANAKA K, 1990, J BIOL CHEM, V265, P11151