Wave-front recovery from two orthogonal sheared interferograms

被引:72
作者
Servin, M [1 ]
Malacara, D [1 ]
Marroquin, JL [1 ]
机构
[1] CTR INVEST MATH,GUANAJUATO 36000,MEXICO
来源
APPLIED OPTICS | 1996年 / 35卷 / 22期
关键词
D O I
10.1364/AO.35.004343
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a new technique for using the information of two orthogonal lateral-shear interferograms to estimate an aspheric wave front. The wave-front estimation from sheared inteferometric data may be considered an ill-posed problem in the sense of Hadamard. We apply Thikonov regularization theory to estimate the wave front that has produced the lateral sheared interferograms as the minimizer of a positive definite-quadratic cost functional. The introduction of the regularization term permits one to find a well-defined and stable solution to the inverse shearing problem over the wave-front aperture as well as to reduce wave-front noise as desired. (C) 1996 Optical Society of America
引用
收藏
页码:4343 / 4348
页数:6
相关论文
共 19 条
[1]  
CORNEJORODRIGUE.A, 1992, OPTICAL SHOP TESTING, P321
[2]   LEAST-SQUARE FITTING A WAVEFRONT DISTORTION ESTIMATE TO AN ARRAY OF PHASE-DIFFERENCE MEASUREMENTS [J].
FRIED, DL .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (03) :370-375
[3]   DIRECT PHASE ESTIMATION FROM PHASE DIFFERENCES USING FAST ELLIPTIC PARTIAL-DIFFERENTIAL EQUATION SOLVERS [J].
GHIGLIA, DC ;
ROMERO, LA .
OPTICS LETTERS, 1989, 14 (20) :1107-1109
[4]  
Golub G.H., 1990, MATRIX COMPUTATIONS
[5]  
Hadamard J., 1902, PRINCETON U B, V13
[6]   WAVEFRONT RECONSTRUCTION FOR COMPENSATED IMAGING [J].
HUDGIN, RH .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (03) :375-378
[7]   MATRIX FORMULATION OF THE RECONSTRUCTION OF PHASE VALUES FROM PHASE DIFFERENCES [J].
HUNT, BR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1979, 69 (03) :393-399
[8]  
MALACARA D, 1992, OPTICAL SHOP TESTING, P51
[9]  
MALCARA D, 1992, OPTICAL SHOP TESTING, P455
[10]  
Mantravadi M, 1992, Optical Shop Testing, V59, P1