Molecular dynamics simulations of DiI-C18(3) in a DPPC lipid bilayer

被引:81
作者
Gullapalli, Ramachandra R. [2 ]
Demirel, Melik C. [1 ]
Butler, Peter J. [2 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Bioengn, University Pk, PA 16802 USA
关键词
D O I
10.1039/b716979e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed a 40 ns simulation of 1,1'-dioctadecyl-3,3,30,3'-tetramethylindocarbocyanine perchlorate (DiI-C-18(3)) in a 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline ( DPPC) bilayer in order to facilitate interpretation of lipid dynamics and membrane structure from fluorescence lifetime, anisotropy, and fluorescence correlations spectroscopy (FCS). Incorporation of DiI of 1.6 to 3.2 mol% induced negligible changes in area per lipid but detectable increases in bilayer thickness, each of which are indicators of membrane structural perturbation. The DiI chromophore angle was 77 +/- 171 with respect to the bilayer normal, consistent with rotational diffusion inferred from polarization studies. The DiI headgroup was located 0.63 nm below the lipid head group-water interface, a novel result in contrast to some popular cartoon representations of DiI but consistent with DiI's increase in quantum yield when incorporated into lipid bilayers. Importantly, the fast component of rotational anisotropy matched published experimental results demonstrating that sufficient free volume exists at the sub-interfacial region to support fast rotations. Simulations with non-charged DiI head groups exhibited DiI flip-flop, demonstrating that the positively-charged chromophore stabilizes the orientation and location of DiI in a single monolayer. DiI induced detectable changes in interfacial properties of water ordering, electrostatic potential, and changes in P-N vector orientation of DPPC lipids. The diffusion coefficient of DiI (9.7 +/- 0.02 x 10(-8) cm(2) s(-1)) was similar to the diffusion of DPPC molecules (10.7 +/- 0.04 x 10(-8) cm(2) s(-1)), supporting the conclusion that DiI dynamics reflect lipid dynamics. These results provide the first atomistic level insight into DiI dynamics, results essential in elucidating lipid dynamics through single molecule fluorescence studies.
引用
收藏
页码:3548 / 3560
页数:13
相关论文
共 61 条
[1]   Cell biology - A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains [J].
Anderson, RGW ;
Jacobson, K .
SCIENCE, 2002, 296 (5574) :1821-1825
[2]   Methodological issues in lipid bilayer simulations [J].
Anézo, C ;
de Vries, AH ;
Höltje, HD ;
Tieleman, DP ;
Marrink, SJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9424-9433
[3]   Dynamics imaging of lipid phases and lipid-marker interactions in model biomembranes [J].
Ariola, Florly S. ;
Mudaliar, Deepti J. ;
Walvicka, Ronn P. ;
Heikal, Ahmed A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2006, 8 (39) :4517-4529
[4]   CARBOCYANINE DYE ORIENTATION IN RED-CELL MEMBRANE STUDIED BY MICROSCOPIC FLUORESCENCE POLARIZATION [J].
AXELROD, D .
BIOPHYSICAL JOURNAL, 1979, 26 (03) :557-573
[5]   LATERAL MOTION OF MEMBRANE-PROTEINS AND BIOLOGICAL FUNCTION [J].
AXELROD, D .
JOURNAL OF MEMBRANE BIOLOGY, 1983, 75 (01) :1-10
[6]   Fluorescence correlation spectroscopy relates rafts in model and native membranes [J].
Bacia, K ;
Scherfeld, D ;
Kahya, N ;
Schwille, P .
BIOPHYSICAL JOURNAL, 2004, 87 (02) :1034-1043
[7]   DYNAMIC BEHAVIOR OF FLUORESCENT PROBES IN LIPID BILAYER MODEL MEMBRANES [J].
BADLEY, RA ;
SCHNEIDER, H ;
MARTIN, WG .
BIOCHEMISTRY, 1973, 12 (02) :268-275
[8]  
Berendsen H. J. C., 1981, INTERMOLECULAR FORCE, P331, DOI [DOI 10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658-1_21]
[9]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[10]   Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature [J].
Berger, O ;
Edholm, O ;
Jahnig, F .
BIOPHYSICAL JOURNAL, 1997, 72 (05) :2002-2013