Differential gene expression in response to brown planthopper feeding in rice

被引:92
作者
Zhang, F [1 ]
Zhu, L [1 ]
He, GC [1 ]
机构
[1] Wuhan Univ, Coll Life Sci, Key Lab Minist Educ Plant Dev Biol, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
brown planthopper (Nilaparvata lugens); cDNA array; gene expression; Northern blot analysis; rice (Oryza sativa);
D O I
10.1078/0176-1617-01179
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant responses to herbivores are complex. 108 c;DNA clones representing genes relating to plant responses to chewing insect-feeding, pathogen infection, wounding and other stresses were collected. Northern blot and cDNA array analysis were employed to investigate gene expression regulated by piercing-sucking insect, brown planthopper (BPH), Nilaparvata lugens (Homoptera: Dephacidae) on both the resistant and susceptible rice genotypes. After BPH feeding in rice for 72 h, the expression of most tested genes was affected. 14 genes in resistant rice variety B5 and 44 genes in susceptible MH63 were significantly up- or down-regulated. Most of the well-regulated genes were grouped in the categories of signaling pathways, oxidative stress/apoptosis, wound-response, drought-inducible and pathogen-related proteins. Those related to the flavonoid pathway, aromatic metabolidsm and the octadecanoid pathway were mostly kept unchanged or down-regulated. Our results indicate that BPH feeding induces plant responses which would take part in a jasmonic acid-independent pathway and crosstalk with those related to abiotic; stress, pathogen invasion and phytohormone signaling pathways.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 54 条
[1]  
Abeles FB., 1992, ETHYLENE PLANT BIOL
[2]   An elicitor of plant volatiles from beet armyworm oral secretion [J].
Alborn, HT ;
Turlings, TCJ ;
Jones, TH ;
Stenhagen, G ;
Loughrin, JH ;
Tumlinson, JH .
SCIENCE, 1997, 276 (5314) :945-949
[3]  
Atkinson HJ, 1996, J NEMATOL, V28, P209
[4]   Merging molecular and ecological approaches in plant-insect interactions [J].
Baldwin, IT ;
Halitschke, R ;
Kessler, A ;
Schittko, U .
CURRENT OPINION IN PLANT BIOLOGY, 2001, 4 (04) :351-358
[5]   Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals [J].
Bergey, DR ;
Howe, GA ;
Ryan, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12053-12058
[6]   Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean.: The first dedicated step in acyclic C11-homoterpene biosynthesis [J].
Bouwmeester, HJ ;
Verstappen, FWA ;
Posthumus, MA ;
Dicke, M .
PLANT PHYSIOLOGY, 1999, 121 (01) :173-180
[7]  
Chen RZ, 2002, ACTA BOT SIN, V44, P427
[8]   ACTIVE OXYGEN SPECIES IN THE INDUCTION OF PLANT SYSTEMIC ACQUIRED-RESISTANCE BY SALICYLIC-ACID [J].
CHEN, ZX ;
SILVA, H ;
KLESSIG, DF .
SCIENCE, 1993, 262 (5141) :1883-1886
[9]   SYSTEMIN ACTIVATES SYNTHESIS OF WOUND-INDUCIBLE TOMATO LEAF POLYPHENOL OXIDASE VIA THE OCTADECANOID DEFENSE SIGNALING PATHWAY [J].
CONSTABEL, CP ;
BERGEY, DR ;
RYAN, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (02) :407-411
[10]   Biosynthesis and action of jasmonates in plants [J].
Creelman, RA ;
Mullet, JE .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :355-381