Manipulating redox systems: application to nanotechnology

被引:98
作者
Gilardi, G [1 ]
Fantuzzi, A [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Biol Sci, London SW7 2AY, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/S0167-7799(01)01769-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Redox proteins and enzymes are attractive targets for nanobiotechnology. The theoretical framework of biological electron transfer is increasingly well-understood, and several properties make redox centres good systems for exploitation: many can be detected both electrochemically and optically; they can perform specific reactions; they are capable of self-assembly; and their dimensions are in the nanoscale. Great progress has been made with the,two main approaches of protein engineering: rational design and combinatorial synthesis. Rational design has put our understanding of the structure-function relationship to the test, whereas combinatorial synthesis has generated new molecules of interest. This article provides selected examples of novel approaches where redox proteins are 'wired up' in efficient electron-transfer chains, are 'assembled' in artificial multidomain structures (molecular Lego), are 'linked' to surfaces in nanodevices for biosensing and nanobiotechnological applications.
引用
收藏
页码:468 / 476
页数:9
相关论文
共 53 条
[1]   Design of novel molecular wires for realizing long-distance electron transfer [J].
Albers, WM ;
Lekkala, JO ;
Jeuken, L ;
Canters, GW ;
Turner, APF .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1997, 42 (01) :25-33
[2]   Fast voltammetric studies of the kinetics and energetics of coupled electron-transfer reactions in proteins [J].
Armstrong, FA ;
Camba, R ;
Heering, HA ;
Hirst, J ;
Jeuken, LJC ;
Jones, AK ;
Léger, C ;
McEvoy, JP .
FARADAY DISCUSSIONS, 2000, 116 :191-203
[3]   Microelectrochemical enzyme transistors [J].
Bartlett, PN ;
Astier, Y .
CHEMICAL COMMUNICATIONS, 2000, (02) :105-112
[4]  
Bendall D.S., 1996, PROTEIN ELECT TRANSF
[5]   Biomolecular electronics: Protein-based associative processors and volumetric memories [J].
Birge, RR ;
Gillespie, NB ;
Izaguirre, EW ;
Kusnetzow, A ;
Lawrence, AF ;
Singh, D ;
Song, QW ;
Schmidt, E ;
Stuart, JA ;
Seetharaman, S ;
Wise, KJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (49) :10746-10766
[6]   Optical biosensing of nitric oxide using the metalloprotein cytochrome c′ [J].
Blyth, DJ ;
Aylott, JW ;
Moir, JWB ;
Richardson, DJ ;
Russell, DA .
ANALYST, 1999, 124 (02) :129-134
[7]   THE ROLE OF TURNS IN THE STRUCTURE OF AN ALPHA-HELICAL PROTEIN [J].
BRUNET, AP ;
HUANG, ES ;
HUFFINE, ME ;
LOEB, JE ;
WELTMAN, RJ ;
HECHT, MH .
NATURE, 1993, 364 (6435) :355-358
[8]   BIOLOGICAL ELECTRON-TRANSFER - STRUCTURAL AND MECHANISTIC STUDIES [J].
CANTERS, GW ;
DENNISON, C .
BIOCHIMIE, 1995, 77 (7-8) :506-515
[9]   Molecular monolayers and interfacial electron transfer of Pseudomonas aeruginosa azurin on Au(111) [J].
Chi, QJ ;
Zhang, JD ;
Nielsen, JU ;
Friis, EP ;
Chorkendorff, I ;
Canters, GW ;
Andersen, JET ;
Ulstrup, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (17) :4047-4055
[10]   Electron transfer at electrodes through conjugated "molecular wire" bridges [J].
Creager, S ;
Yu, CJ ;
Bamdad, C ;
O'Connor, S ;
MacLean, T ;
Lam, E ;
Chong, Y ;
Olsen, GT ;
Luo, JY ;
Gozin, M ;
Kayyem, JF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (05) :1059-1064