Coarse-grained protein model coupled with a coarse-grained water model: Molecular dynamics study of polyalanine-based peptides

被引:41
作者
Han, Wei [1 ]
Wu, Yun-Dong
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, Kowloon, Hong Kong, Peoples R China
[2] Peking Univ, Coll Chem, State Key Lab Mol Dynam & Stable Struct, Beijing, Peoples R China
关键词
D O I
10.1021/ct700151x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The coupling of a coarse-grained (CG) protein model with the CG water model developed by Marrink et al. (J. Phys. Chem. B 2004, 108, 750) is presented. The model was used in the molecular dynamics studies of Ac-(Ala)(6)-Xaa-(Ala)(7)-NHMe, Xaa = Ala, Leu, Val, and Gly. A Gly mutation in the middle of polyalanine is found to destabilize the helix and stabilize the hairpin by favoring a type-II' turn and probably to speed up hair-pin folding. The simulations allow us to derive thermodynamic parameters of, in particular, the helical propensities (s) of amino acids in these polyalanine-based peptides. The calculated s values are 1.18 (Ala), 0.84 (Leu), 0.30 (Val), and <0.02 (Gly) at 291 K, in excellent agreement with experimental values (R-2=0.970). Analyses using a structural approach method show that the helical propensity difference of these amino acids mainly comes from solvation effect. Leu and Val have lower helical propensities than Ala mainly because the larger side chains shield the solvation of helical structures, while Gly has a much poorer helical propensity mainly due to the much better solvation for the coil structures than for the helical structures. Overall, the model is at least about 10(2) times faster than current all-atom MD methods with explicit solvent.
引用
收藏
页码:2146 / 2161
页数:16
相关论文
共 93 条
[1]   NON-INTERACTING LOCAL-STRUCTURE MODEL OF FOLDING AND UNFOLDING TRANSITION IN GLOBULAR-PROTEINS .2. APPLICATION TO TWO-DIMENSIONAL LATTICE PROTEINS [J].
ABE, H ;
GO, N .
BIOPOLYMERS, 1981, 20 (05) :1013-1031
[2]  
Mezei M, 1986, Ann N Y Acad Sci, V482, P1, DOI 10.1111/j.1749-6632.1986.tb20933.x
[3]  
[Anonymous], INTERMOLECULAR INTER
[4]   Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities [J].
Avbelj, F ;
Luo, PZ ;
Baldwin, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (20) :10786-10791
[5]  
AVDELJ F, 2000, J MOL BIOL, V300, P1335
[6]  
Ben-Naim A., 1987, SOLVATION THERMODYNA
[7]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[8]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[9]   AVOIDING SINGULARITIES AND NUMERICAL INSTABILITIES IN FREE-ENERGY CALCULATIONS BASED ON MOLECULAR SIMULATIONS [J].
BEUTLER, TC ;
MARK, AE ;
VANSCHAIK, RC ;
GERBER, PR ;
VANGUNSTEREN, WF .
CHEMICAL PHYSICS LETTERS, 1994, 222 (06) :529-539
[10]   THE SOLUBILITY OF WATER IN HYDROCARBONS [J].
BLACK, C ;
JORIS, GG ;
TAYLOR, HS .
JOURNAL OF CHEMICAL PHYSICS, 1948, 16 (05) :537-543