Fabrication and evaluation of a 3-dimensional microchip device where carbon microelectrodes individually address channels in the separate fluidic layers

被引:4
作者
Hulvey, Matthew K.
Genes, Luiza I.
Spence, Dana M.
Martin, R. Scott
机构
[1] St Louis Univ, Dept Chem, St Louis, MO 63103 USA
[2] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
关键词
D O I
10.1039/b711148g
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A fabrication method that results in a 3-dimensional fluidic device containing poly( dimethylsiloxane) ( PDMS) -embedded microelectrodes that individually address each layer is described. The two electrode-containing layers and the polycarbonate membrane are reversibly sealed together, eliminating the need for plasma oxidation during device assembly, while enabling simultaneous amperometric detection in membrane-separated fluidic channels. The electrodes were characterized using microchip-based flow analysis. It was found that PDMS-embedded electrodes have a limit of detection ( 400 nM for catechol) that is 5-fold lower than that reported for microchip-based flow analysis with similar electrodes in a hybrid PDMS-glass device. The selectivity of the carbon ink microelectrodes can be tuned by a simplified modification procedure; this was demonstrated by the selective detection of nitric oxide over possible interferents. Finally, the ability to monitor processes occurring in separate layers of a 3-dimensional device was shown by the simultaneous detection of catechol on either side of the polycarbonate membrane. The electrode response in each fluidic channel was found to be linear as a function of concentration and the transport between layers could be controlled by varying the linear velocities of each fluidic channel. The ability to fabricate and operate this type of 3-dimensional device will be useful for the development of cell-based in vivo mimics that involve the transport of molecular messengers and/ or pharmaceuticals across layers of immobilized cells.
引用
收藏
页码:1246 / 1253
页数:8
相关论文
共 43 条
[1]   Self-contained microelectrochemical immunoassay for small volumes using mouse IgG as a model system [J].
Aguilar, ZP ;
Vandaveer, WR ;
Fritsch, I .
ANALYTICAL CHEMISTRY, 2002, 74 (14) :3321-3329
[2]  
Anderson J.L., 1996, LAB TECHNIQUES ELECT, V2nd, P333
[3]  
Audus K L, 1996, Pharm Biotechnol, V8, P239
[4]  
Beckman J. S., 1996, NITRIC OXIDE PRINCIP, P1, DOI DOI 10.1016/B978-012435555-2/50002-4
[5]  
Bott A., 1995, Curr, P64
[6]   Micro total analysis systems. Latest advancements and trends [J].
Dittrich, Petra S. ;
Tachikawa, Kaoru ;
Manz, Andreas .
ANALYTICAL CHEMISTRY, 2006, 78 (12) :3887-3907
[7]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[8]   Integrated capillary electrophoresis on flexible silicone microdevices: Analysis of DNA restriction fragments and detection of single DNA molecules on microchips [J].
Effenhauser, CS ;
Bruin, GJM ;
Paulus, A ;
Ehrat, M .
ANALYTICAL CHEMISTRY, 1997, 69 (17) :3451-3457
[9]   Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels [J].
Fa, K ;
Tulock, JJ ;
Sweedler, JV ;
Bohn, PW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (40) :13928-13933
[10]   PERMEABILITY OF GLUCOSE AND OTHER NEUTRAL SPECIES THROUGH RECAST PERFLUOROSULFONATED IONOMER FILMS [J].
FAN, ZH ;
HARRISON, DJ .
ANALYTICAL CHEMISTRY, 1992, 64 (11) :1304-1311