The single chlorophyll a molecule in the cytochrome b6 f complex:: Unusual optical properties protect the complex against singlet oxygen

被引:46
作者
Dashdorj, N
Zhang, HM
Kim, HY
Yan, JS
Cramer, WA
Savikhin, S [1 ]
机构
[1] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1529/biophysj.104.058693
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The cytochrome b(6)f complex of oxygenic photosynthesis mediates electron transfer between the reaction centers of photosystems I and II and facilitates coupled proton translocation across the membrane. High-resolution x-ray crystallographic structures (Kurisu et al., 2003; Stroebel et al., 2003) of the cytochrome b(6)f complex unambiguously show that a Chl a molecule is an intrinsic component of the cytochrome b(6)f complex. Although the functional role of this Chl a is presently unclear (Kuhlbrandt, 2003), an excited Chl a molecule is known to produce toxic singlet oxygen as the result of energy transfer from the excited triplet state of the Chl a to oxygen molecules. To prevent singlet oxygen formation in light-harvesting complexes, a carotenoid is typically positioned within similar to 4 angstrom of the Chl a molecule, effectively quenching the triplet excited state of the Chl a. However, in the cytochrome b(6)f complex, the beta-carotene is too far (>= 14 angstrom) from the Chl a for effective quenching of the Chl a triplet excited state. In this study, we propose that in this complex, the protection is at least partly realized through special arrangement of the local protein structure, which shortens the singlet excited state lifetime of the Chl a by a factor of 20-25 and thus significantly reduces the formation of the Chl a triplet state. Based on optical ultrafast absorption difference experiments and structure-based calculations, it is proposed that the Chl a singlet excited state lifetime is shortened due to electron exchange transfer with the nearby tyrosine residue. To our knowledge, this kind of protection mechanism against singlet oxygen has not yet been reported for any other chlorophyll-containing protein complex. It is also reported that the Chl a molecule in the cytochrome b(6)f complex does not change orientation in its excited state.
引用
收藏
页码:4178 / 4187
页数:10
相关论文
共 63 条
[1]   Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans [J].
Aubert, C ;
Mathis, P ;
Eker, APM ;
Brettel, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (10) :5423-5427
[2]  
BALD D, 1992, P 9 INT C PHOT, P629
[3]   Structure and function of cytochrome bc complexes [J].
Berry, EA ;
Guergova-Kuras, M ;
Huang, LS ;
Crofts, AR .
ANNUAL REVIEW OF BIOCHEMISTRY, 2000, 69 :1005-1075
[4]   Short-range order effect on resonance energy transfer in rigid solution [J].
Bodunov, EN ;
Berberan-Santos, MN .
CHEMICAL PHYSICS, 2004, 301 (01) :9-14
[5]   QUANTUM YIELDS OF TRIPLET FORMATION IN SOLUTIONS OF CHLOROPHYLL [J].
BOWERS, PG ;
PORTER, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 296 (1447) :435-&
[6]   Some new structural aspects and old controversies concerning the cytochrome b(6)f complex of oxygenic photosynthesis [J].
Cramer, WA ;
Soriano, GM ;
Ponomarev, M ;
Huang, D ;
Zhang, H ;
Martinez, SE ;
Smith, JL .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :477-508
[7]  
Dawson R.M. C., 2002, DATA BIOCH RES
[8]   ELECTROCHEMICAL PROPERTIES OF TYROSINE PHENOXY AND TRYPTOPHAN INDOLYL RADICALS IN PEPTIDES AND AMINO-ACID-ANALOGS [J].
DEFELIPPIS, MR ;
MURTHY, CP ;
BROITMAN, F ;
WEINRAUB, D ;
FARAGGI, M ;
KLAPPER, MH .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (08) :3416-3419
[9]   PULSE RADIOLYTIC MEASUREMENT OF REDOX POTENTIALS - THE TYROSINE AND TRYPTOPHAN RADICALS [J].
DEFELIPPIS, MR ;
MURTHY, CP ;
FARAGGI, M ;
KLAPPER, MH .
BIOCHEMISTRY, 1989, 28 (11) :4847-4853
[10]   A THEORY OF SENSITIZED LUMINESCENCE IN SOLIDS [J].
DEXTER, DL .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (05) :836-850