Physical determinants of cell organization in soft media

被引:113
作者
Schwarz, US [1 ]
Bischofs, IB
机构
[1] Max Planck Inst Colloids & Interfaces, D-14424 Potsdam, Germany
[2] Heidelberg Univ, IWR, BIOMS, INF 368, D-69120 Heidelberg, Germany
关键词
cell-matrix adhesion; focal adhesions; cytoskeleton; mechanotransduction;
D O I
10.1016/j.medengphy.2005.04.007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cell adhesion is an integral part of many physiological processes in tissues, including development, tissue maintenance, angiogenesis, and wound healing. Recent advances in materials science (including microcontact printing, soft lithography, microfluidics, and nanotechnology) have led to strongly improved control of extracellular ligand distribution and of the properties of the micromechanical environment. As a result, the investigation of cellular response to the physical properties of adhesive surfaces has become a very active area of research. Sophisticated use of elastic substrates has revealed that cell organization in soft media is determined by active mechanosensing at cell-matrix adhesions. In order to determine the underlying mechanisms, quantification and biophysical modelling are essential. In tissue engineering, theory might help to design new environments for cells. (c) 2005 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:763 / 772
页数:10
相关论文
共 83 条
[1]   Activation of integrin function by nanopatterned adhesive interfaces [J].
Arnold, M ;
Cavalcanti-Adam, EA ;
Glass, R ;
Blümmel, J ;
Eck, W ;
Kantlehner, M ;
Kessler, H ;
Spatz, JP .
CHEMPHYSCHEM, 2004, 5 (03) :383-388
[2]   Structural basis for vinculin activation at sites of cell adhesion [J].
Bakolitsa, C ;
Cohen, DM ;
Bankston, LA ;
Bobkov, AA ;
Cadwell, GW ;
Jennings, L ;
Critchley, DR ;
Craig, SW ;
Liddington, RC .
NATURE, 2004, 430 (6999) :583-586
[3]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[4]   Marching at the front and dragging behind:: differential α-Vβ3-integrin turnover regulates focal adhesion behavior [J].
Ballestrem, C ;
Hinz, B ;
Imhof, BA ;
Wehrle-Haller, B .
JOURNAL OF CELL BIOLOGY, 2001, 155 (07) :1319-1332
[5]   An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance [J].
Barocas, VH ;
Tranquillo, RT .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1997, 119 (02) :137-145
[6]   PRODUCTION OF A TISSUE-LIKE STRUCTURE BY CONTRACTION OF COLLAGEN LATTICES BY HUMAN-FIBROBLASTS OF DIFFERENT PROLIFERATIVE POTENTIAL INVITRO [J].
BELL, E ;
IVARSSON, B ;
MERRILL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1274-1278
[7]   Tension-dependent collective cell movements in the early gastrula ectoderm of Xenopus laevis embryos [J].
Beloussov, LV ;
Louchinskaia, NN ;
Stein, AA .
DEVELOPMENT GENES AND EVOLUTION, 2000, 210 (02) :92-104
[8]   Flexible substrata for the detection of cellular traction forces [J].
Beningo, KA ;
Wang, YL .
TRENDS IN CELL BIOLOGY, 2002, 12 (02) :79-84
[9]   Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J].
Beningo, KA ;
Dembo, M ;
Kaverina, I ;
Small, JV ;
Wang, YL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :881-887
[10]   Adhesion-dependent cell mechanosensitivity [J].
Bershadsky, AD ;
Balaban, NQ ;
Geiger, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2003, 19 :677-695