Arbitrary two-qubit computation in 23 elementary gates

被引:46
作者
Bullock, SS [1 ]
Markov, IL
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Natl Inst Stand & Technol, Math & Computat Sci Div, Gaithersburg, MD 20899 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 01期
关键词
D O I
10.1103/PhysRevA.68.012318
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the problem of constructing quantum circuits to implement an arbitrary two-qubit quantum computation. We pursue circuits without ancilla qubits and as small a number of elementary quantum gates as possible. Our lower bound for worst-case optimal two-qubit circuits calls for at least 17 gates: 15 one-qubit rotations and 2 controlled-NOT (CNOT) gates. We also constructively prove a worst-case upper bound of 23 elementary gates, of which at most four (CNOT gates) entail multiqubit interactions. Our analysis shows that synthesis algorithms suggested in previous work, although more general, entail larger quantum circuits than ours in the special case of two qubits. One such algorithm has a worst case of 61 gates, of which 18 may be CNOT gates.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Practical scheme for quantum computation with any two-qubit entangling gate [J].
Bremner, MJ ;
Dawson, CM ;
Dodd, JL ;
Gilchrist, A ;
Harrow, AW ;
Mortimer, D ;
Nielsen, MA ;
Osborne, TJ .
PHYSICAL REVIEW LETTERS, 2002, 89 (24)
[5]  
Cartan E., 1927, ANN SCI ECOLE NORM S, V44, P345
[6]   Reducing quantum computations to elementary unitary operations [J].
Cybenko, G .
COMPUTING IN SCIENCE & ENGINEERING, 2001, 3 (02) :27-32
[7]  
DAWSON C, 2002, GQC QUANTUM COMPILER
[8]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[9]  
HACHTEL G, 2000, SYNTHESIS VERIFICATI
[10]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025