Lithium Dendrite Formation in Li/Poly(ethylene oxide)-Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells

被引:129
作者
Liu, S. [1 ,2 ]
Imanishi, N. [1 ]
Zhang, T. [1 ]
Hirano, A. [1 ]
Takeda, Y. [1 ]
Yamamoto, O. [1 ]
Yang, J. [2 ]
机构
[1] Mie Univ, Dept Chem, Fac Engn, Tsu, Mie 5148507, Japan
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
关键词
TEMPERATURE IONIC LIQUIDS; AIR SECONDARY BATTERIES; POLYMER ELECTROLYTES; ELECTROCHEMICAL PROPERTIES; LITHIUM/POLYMER CELLS; IN-SITU; COMPOSITE; GROWTH; ELECTRODES; SYSTEMS;
D O I
10.1149/1.3473790
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium metal dendrite growth in Li/poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide (PEO(x)LiTFSI) and in an ionic liquid, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI) composite solid polymer electrolyte/Li was examined by direct in situ observation. Lithium dendrite formation was observed after 15 h of polarization at 0.5 mA cm(-2) and at 60 degrees C on PEO(18)LiTFSI. The onset time was increased to 35 h at 0.5 mA cm(-2) by the addition of PP13TFSI into PEO(18)LiTFSI up to 1.44 mol. The dendrite onset time decreased with increasing current density and deviated from Sand's law in the current density range of 0.1-0.5 mA cm(-2) at 60 degrees C. The electrical conductivity of PEO(18)LiTFSI was enhanced, and the interface resistance between Li and PEO(18)LiTFSI was suppressed by the addition of PP13TFSI. The lithium ion transport number of the composite electrolyte decreased with increasing x in PEO(18)LiTFSI-xPP13TFSI. The suppression of the lithium dendrite formation could be explained by the low resistance of the interface layer between lithium and the composite polymer electrolyte. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3473790] All rights reserved.
引用
收藏
页码:A1092 / A1098
页数:7
相关论文
共 31 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - I. Electrochemical properties of dry PEO-LiX systems [J].
Appetecchi, GB ;
Croce, F ;
Dautzenberg, G ;
Mastragostino, M ;
Ronci, F ;
Scrosati, B ;
Soavi, F ;
Zanelli, A ;
Alessandrini, F ;
Prosini, PP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4126-4132
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   In situ study of dendritic growth in lithium/PEO-salt/lithium cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Baudry, P ;
Lascaud, S .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1569-1574
[5]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[6]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[7]   Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids [J].
Cheng, Hu ;
Zhu, Changbao ;
Huang, Bin ;
Lu, Mi ;
Yang, Yong .
ELECTROCHIMICA ACTA, 2007, 52 (19) :5789-5794
[8]   ELECTROCHEMICAL MEASUREMENT OF TRANSFERENCE NUMBERS IN POLYMER ELECTROLYTES [J].
EVANS, J ;
VINCENT, CA ;
BRUCE, PG .
POLYMER, 1987, 28 (13) :2324-2328
[9]   Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li [J].
Liu, S. ;
Imanishi, N. ;
Zhang, T. ;
Hirano, A. ;
Takeda, Y. ;
Yamamoto, O. ;
Yang, J. .
JOURNAL OF POWER SOURCES, 2010, 195 (19) :6847-6853
[10]   Novel composite anodes consisting of lithium transition-metal nitrides and transition metal oxides for rechargeable Li-ion batteries [J].
Liu, Y ;
Takeda, Y ;
Matsumura, T ;
Yang, J ;
Imanishi, N ;
Hirano, A ;
Yamamoto, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A437-A444