An analysis of heteronuclear-NMR-based screening data is used to derive relationships between the ability of small molecules to bind to a protein and various parameters that describe the protein binding site. It is found that a simple model including terms for polar and apolar surface area, surface complexity, and pocket dimensions accurately predicts the experimental screening hit rates with an R-2 of 0.72, an adjusted R-2 of 0.65, and a leave-one-out Q(2) of 0.56. Application of the model to predict the druggability of protein targets not used in the training set correctly classified 94% of the proteins for which high-affinity, noncovalent, druglike leads have been reported. In addition to understanding the pocket characteristics that contribute to high-affinity binding, the relationships that have been defined allow for quantitative comparative analyses of protein binding sites for use in target assessment and validation, virtual ligand screening, and structure-based drug design.