Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells - Dependence on tyrosine kinases and intracellular calcium

被引:152
作者
Yan, C
Takahashi, M
Okuda, M
Lee, JD
Berk, BC
机构
[1] Univ Rochester, Cardiol Unit, Rochester, NY 14642 USA
[2] Univ Washington, Dept Med, Div Cardiol, Seattle, WA 98195 USA
[3] Scripps Res Inst, Dept Immunol, La Jolla, CA 92037 USA
关键词
D O I
10.1074/jbc.274.1.143
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitogen-activated protein (MAP) kinases including ERK1/2 and JNK play an important role in shear stress-mediated gene expression in endothelial cells (EC). A new MAP kinase termed big MAP kinase 1 (BMK1/ERK5) has been shown to phosphorylate and activate the transcription factor MEF2C, which is highly expressed in EC, To determine the effects of shear stress on BMK1, bovine aortic EC were exposed to steady laminar flow (shear stress = 12 dynes/cm(2)). Flow activated BMK1 within 10 min with peak activation at 60 min (7.1 +/- 0.6-fold) in a force-dependent manner. Flow was the most powerful activator of BMK1, significantly greater than H2O2 or sorbitol. An important role for non-Src tyrosine kinases in flow-mediated BMK1 activation was demonstrated by inhibition with herbimycin A, but not with the Src inhibitor PP1 or overexpression of kinase-inactive c-Src. BMK1 activation was calcium-dependent as shown by inhibition with 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid/acetoxymethyl ester or thapsigargin, As shown by specific inhibitors or activators, flow-mediated BMK1 activation was not regulated by the following: intracellular redox state; intracellular NO; protein kinase A, C, or G; calcium/calmodulin-dependent kinase; phosphatidylinositol 3-kinase; or arachidonic acid metabolism. In summary, flow potently stimulates BMK1 in EC by a mechanism dependent on a tyrosine kinase(s) and calcium mobilization, but not on c-Src, redox state, or NO production.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 39 条
[1]   Reactive oxygen species as mediators of signal transduction in cardiovascular disease [J].
Abe, J ;
Berk, BC .
TRENDS IN CARDIOVASCULAR MEDICINE, 1998, 8 (02) :59-64
[2]   c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1 (BMK1) [J].
Abe, J ;
Takahashi, M ;
Ishida, M ;
Lee, JD ;
Berk, BC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20389-20394
[3]  
ABE J, 1996, CIRCULATION, V94, P280
[4]   Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: A hypothesis for calcium-dependent and calcium-independent events activated by flow [J].
Berk, BC ;
Corson, MA ;
Peterson, TE ;
Tseng, H .
JOURNAL OF BIOMECHANICS, 1995, 28 (12) :1439-1450
[5]   PARALLEL SIGNAL-PROCESSING AMONG MAMMALIAN MAPKS [J].
CANO, E ;
MAHADEVAN, LC .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (03) :117-122
[6]   Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress [J].
Corson, MA ;
James, NL ;
Latta, SE ;
Nerem, RM ;
Berk, BC ;
Harrison, DG .
CIRCULATION RESEARCH, 1996, 79 (05) :984-991
[7]   Oscillatory and steady laminar shear stress differentially affect human endothelial redox state - Role of a superoxide-producing NADH oxidase [J].
De Keulenaer, GW ;
Chappell, DC ;
Ishizaka, N ;
Nerem, RM ;
Alexander, RW ;
Griendling, KK .
CIRCULATION RESEARCH, 1998, 82 (10) :1094-1101
[8]   Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress [J].
Fleming, I ;
Bauersachs, J ;
Fisslthaler, B ;
Busse, R .
CIRCULATION RESEARCH, 1998, 82 (06) :686-695
[9]   Thiol compounds interact with nitric oxide in regulating heme oxygenase-1 induction in endothelial cells - Involvement of superoxide and peroxynitrite anions [J].
Foresti, R ;
Clark, JE ;
Green, CJ ;
Motterlini, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (29) :18411-18417
[10]  
GHIGO D, 1993, AM J PHYSIOL, V265, P728