Moving discrete breathers?

被引:71
作者
Flach, S [1 ]
Kladko, K [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
关键词
breathers; one-dimensional lattice; Schrodinger equation; Klein-Gordon model; movability;
D O I
10.1016/S0167-2789(98)00274-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give definitions for different types of moving spatially localized objects in discrete nonlinear lattices. We derive general analytical relations connecting frequency, velocity and localization length of moving discrete breathers and kinks in nonlinear one-dimensional lattices. Then we propose a new numerical algorithm to find these solutions. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 26 条
[1]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[2]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[3]   STATIONARY AND MOVING INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL MONATOMIC LATTICES WITH CUBIC AND QUARTIC ANHARMONICITY [J].
BICKHAM, SR ;
KISELEV, SA ;
SIEVERS, AJ .
PHYSICAL REVIEW B, 1993, 47 (21) :14206-14211
[4]  
BIRNIR B, 1994, LECT NOTES PURE APPL, V156, P43
[5]   LOCALIZED STATES IN DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :591-595
[6]  
CARR J, 1996, SOLITARY WAVES LATTI
[7]   Breather mobility in discrete phi(4) nonlinear lattices [J].
Chen, D ;
Aubry, S ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4776-4779
[8]   MOVING LOCALIZED MODES IN NONLINEAR LATTICES [J].
CLAUDE, C ;
KIVSHAR, YS ;
KLUTH, O ;
SPATSCHEK, KH .
PHYSICAL REVIEW B, 1993, 47 (21) :14228-14232
[9]   NONPERSISTENCE OF BREATHER FAMILIES FOR THE PERTURBED SINE-GORDON EQUATION [J].
DENZLER, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 158 (02) :397-430
[10]  
Dodd R. K., 1982, Solitons and nonlinear wave equations