Air-sky convolution for polarimetry experiments -: art. no. 123002

被引:36
作者
Challinor, A
Fosalba, P
Mortlock, D
Ashdown, M
Wandelt, B
Górski, K
机构
[1] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England
[2] European Space Agcy, European Space Res & Technol Ctr, Dept Space Sci, Div Astrophys, NL-2200 AG Noordwijk, Netherlands
[3] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] European So Observ, D-8046 Garching, Germany
来源
PHYSICAL REVIEW D | 2000年 / 62卷 / 12期
关键词
D O I
10.1103/PhysRevD.62.123002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss all-sky convolution of the instrument beam with the sky signal in polarimetry experiments, such as the Planck mission which will map the temperature anisotropy and polarization of the cosmic microwave background (CMB). To account properly for stray light (from e.g. the galaxy, sun, and planets) in the far side-lobes of such an experiment, it is necessary to perform the beam convolution over the full sky. We discuss this process in multipole space for an arbitrary beam response, fully including the effects of beam asymmetry and cross polarization. The form of the convolution in multipole space is such that the Wandelt-Gorski fast technique for all-sky convolution of scalar signals (e.g. temperature) can be applied with little modification. We further show that for the special case of a pure co-polarized, axisymmetric beam the effect of the convolution can be described by spin-weighted window functions. In the limits of a small angle beam and large Legendre multipoles, the spin-weight 2 window function for the linear polarization reduces to the usual scalar window function used in previous analyses of beam effects in CMB polarimetry experiments. While we focus on the example of polarimetry experiments in the context of CR IB studies, we emphasize that the formalism we develop is applicable to anisotropic filtering of arbitrary tensor fields on the sphere.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 29 条
  • [1] [Anonymous], ASTRONPHYS J
  • [2] Barreiro RB, 2000, NEW ASTRON REV, V44, P179, DOI 10.1016/S1387-6473(00)00063-4
  • [3] Basko M. M., 1980, Soviet Astronomy, V24, P268
  • [4] Bond J. R., 1984, ASTROPHYS J LETT, V285, P45
  • [5] Radical compression of cosmic microwave background data
    Bond, JR
    Jaffe, AH
    Knox, L
    [J]. ASTROPHYSICAL JOURNAL, 2000, 533 (01) : 19 - 37
  • [6] THE STATISTICS OF COSMIC BACKGROUND-RADIATION FLUCTUATIONS
    BOND, JR
    EFSTATHIOU, G
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 226 (03) : 655 - &
  • [7] Brink D. M., 1993, Angular Momentum, V3rd ed.
  • [8] Microwave background polarization in cosmological models
    Challinor, A
    [J]. PHYSICAL REVIEW D, 2000, 62 (04) : 1 - 16
  • [9] A flat Universe from high-resolution maps of the cosmic microwave background radiation
    de Bernardis, P
    Ade, PAR
    Bock, JJ
    Bond, JR
    Borrill, J
    Boscaleri, A
    Coble, K
    Crill, BP
    De Gasperis, G
    Farese, PC
    Ferreira, PG
    Ganga, K
    Giacometti, M
    Hivon, E
    Hristov, VV
    Iacoangeli, A
    Jaffe, AH
    Lange, AE
    Martinis, L
    Masi, S
    Mason, PV
    Mauskopf, PD
    Melchiorri, A
    Miglio, L
    Montroy, T
    Netterfield, CB
    Pascale, E
    Piacentini, F
    Pogosyan, D
    Prunet, S
    Rao, S
    Romeo, G
    Ruhl, JE
    Scaramuzzi, F
    Sforna, D
    Vittorio, N
    [J]. NATURE, 2000, 404 (6781) : 955 - 959
  • [10] SPIN-S SPHERICAL HARMONICS AND EDTH
    GOLDBERG, JN
    MACFARLA.AJ
    NEWMAN, ET
    ROHRLICH, F
    SUDARSHA.CG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) : 2155 - &